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1. Introduction 

1.1  Overview 

The IFs health model allows users to forecast age, sex, and country specific health 

outcomes related to 15 cause categories (see table) out to the year 2100.  Based on 

previous work done by the World Health Organization’s (WHO) Global Burden of 

Disease (GBD) project1, formulations based on three distal drivers – income, education, 

and technology – comprise the core of the IFs health model.  However, the IFs model 

goes beyond the distal drivers, including both richer structural formulations and 

proximate health drivers (e.g. nutrition and environmental variables).  Integration into the 

IFs system also allows us to incorporate forward linkages from health to other systems, 

such as the economic and population modules.  Importantly, IFs provides the user the 

ability to vary model assumptions and create customized scenarios; as such, IFs is a tool 

exploring how policy choices might result in alternative health futures.  

This documentation supplements the third volume of the PPHP series, “Improving Global 

Health,” (Hughes et al, 2011) by providing technical details of health model integration 

into the IFs system.  It includes the specific equations used to forecast outcomes and 

drivers, relative risk values for proximate drivers, and data manipulations related to 

model initialization and projection.  We intend the IFs model to be fully transparent to all 

users, and invite comments and questions at http://www.ifs.du.edu/contact/index.aspx. 

Cause groups in IFs 

Group I – Communicable, Maternal, Perinatal, and Nutritional Conditions 

• Diarrheal diseases 

• Malaria 

• Respiratory infections 

• HIV/AIDS 

• Other Group I causes 

Group II – Noncommunicable Diseases 

• Malignant neoplasms 

• Cardiovascular diseases 

• Digestive diseases 

• Chronic respiratory diseases 

• Diabetes 

• Mental health 

• Other Group II causes 

Group III – Injuries 

• Road traffic accidents 

• Other unintentional injuries 

• Intentional injuries 

 

                                                 

1 See Mathers and Loncar (2006) for details on GBD projections of cause-specific mortality out to 2030. 
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1.2 Dominant Relations 

 

Health forecasting systems typically can help us either (1) to understand better where 

patterns of human development appear to be taking us with respect to global health, 

giving attention to the distribution of disease burden and the patterns of change in it; or 

(2) to consider opportunities for intervention and achievement of alternative health 

futures, enhancing the foundation for decisions and actions that improve health.   

 

Broad structural models (e.g., that of the Global Burden of Disease or GBD) assist in the 

first purpose by relating deep or distal development drivers to outcomes.  More 

specialized structural formulations and the inclusion of proximate drivers open the door 

to the second, allowing for consideration of interventions in the pursuit of alternate health 

futures.  A more hybrid and integrated model form like that of IFs can help with both 

purposes and provide a richer overall picture of alternative health futures.  

 

The figure shows the general structure.  Formulations based on distal drivers (the GBD 

methodology) sit at its core.  There is no inherent reason, however, that income, 

education and time (the distal drivers of the GBD approach) should be equally capable of 

helping us forecast disease in each of the major categories (let alone each of the specific 

diseases) that the GBD models examine.  For example, distal driver formulations tend to 

produce forecasts of constantly decreasing death rates.  Yet we know, for instance, that 

smoking, obesity, road traffic accidents, and their related toll on health tend to increase in 

developing societies among those who first obtain higher levels of income and education; 

with further societal spread of income and education, at least smoking and road traffic 

deaths (and perhaps also obesity) typically decline.2   

 

Proximate

risk analysis
Super-distal

drivers

Replacements 

(more richly 

structural)

Distal driver 

formulations

Health 

outcomes

Other components:  Demographic, economic, educational, socio-political, agricultural, 

environmental

 
Envisioning a hybrid and integrated health forecasting approach   

 

 

A hybrid model can therefore help us identify opportunities for interventions to improve 

health futures. These interventions might also occur in the form of super-distal drivers 

                                                 
2 It is partly for this reason that the creators of the GBD models added exogenous specification of smoking 

impact to the otherwise mostly monotonically (one-direction only) changing specifications.  
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(for example, policy-driven human action with respect to health systems).  The 

sociopolitical and environmental modules in IFs act in part as super-distal foundations for 

variables such as undernutrition and indoor air pollution which, in turn, facilitate analyses 

of proximate risk factors and human action around them.   

 

The integrated nature of the IFs modeling system further allows us to think about 

feedback loops between health outcomes and larger development variables such as 

economic progress and population structure.   

 

1.3 Structure and Agent Based System: Governance 

Structure and Agent System: Governance 

System/Sub System Health 

Organizing Structure Hybrid structure using distal driver 

formulations supplemented by proximate 

drivers; integrated with larger IFs systems 

such as population and governance. 

Stocks Population by age-sex; stunted 

population; HIV prevalence. 

Flows Births, mortality and morbidity. 

Key Aggregate Relationships 
Distal driver formulations driven by 

income, education, and time as a proxy for 

technological advance.  Proximate driver 

formulations driven by various social 

patterns and behaviors. 

Key Agent-Class Behavior Relationships Behavior related to proximate drivers such 

as smoking, indoor solid fuel use, obesity.  
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2. Health Flow Charts 

 

Mortality from most causes of death is a function of a small number of distal or deep 

drivers and a larger number of proximate or more immediate drivers.  For two specific 

mortality types, however, specifically deaths from AIDS and vehicle accidents, there are 

more specialized representations that rely on a number of more cause-related drivers. 

 

2.1 Distal Drivers and Basic Indicators 

To forecast mortality related to most of the major cause clusters we use the regression 

models and associated beta coefficients prepared for the GBD project (Mathers and 

Loncar 2006).  Age, sex, cause, and country-specific mortality rate is a function of 

income (using GDP per capita as a proxy), adult education, technological progress. For 

specific death causes, smoking impact (for malignant neoplasms, cardiovascular disease, 

and respiratory disease) or body mass index (for diabetes only) add to the causality; see 

the discussion of flow charts and equations for information on the determination within 

IFs of smoking and smoking impact and of body mass index and obesity.  

 

+
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A number of parameters control technology in the distal functions.  In the default mode 

(hlmortmodsw = 1), IFs modifies the technology (time) coefficient in recognition of 

slower than expected historical progress in many countries, an approach developed in the 

Global Burden of Disease (GBD project).  Those country differences are controlled by 
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hltechbase, hltechlinc, and hltechssa.  Setting the switch value to 0 activates an 

alternative IFs project approach to the impact of those parameters. 

 

The user can also affect the mortality patterns directly with several parameters, including 

mortm, which allows simultaneous manipulation of all causes of death and hlmortm, 

which facilitates manipulation of each cause of death separately.   Hlmortcdchldm 

changes the rates of all communicable diseases for children aged 5 and younger, while 

hlmortcdadltm affects rates of death from communicable diseases for adults aged 15-49. 

 

Based on the mortality level, it is possible to compute the years of life lost to each cause 

of death (HLYLL).  Using WHO-based estimates, IFs links mortality also to years of 

living with disability (HLYLD).  The sum of the two is disability-adjusted life years lost 

(HLDALYS) 

 

The forecast of mortality in this figure, dependent almost entirely on distal factors, is not 

actually the final calculation in the model.  See the discussion of the entry of proximate 

drivers into the discussion of population attributable mortality fractions (PAFs), in 

interaction with distal-based mortality, for the rest of the story. 

 

Because of the importance of smoking impact in the distal driver formulation, it is 

important that we elaborate that term.   Body mass index is, at this point, only linked to 

diabetes and we discuss that in the context of the PAFs. 
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2.2 Smoking and Smoking Impact 

Of the various specific health risks that the model treats, smoking has a special place 

because its impact is in the distal driver formulation of the IFs health model.  The figure 

shows that the impact is driven by the rate of smoking (differentiated by males and 

females) 25 years earlier, with the relationship controlled by an impact elasticity 

(hlsmkel).  The user can also posit as a nearer term (in the model immediate) impact by 

setting a switch for that (hlsmkimeff) at some fractional value of the full delayed impact–

the value in the base case is 0.1 or 10 percent.  For analysis purposes, another switch 

(hlsmimpsw) can turn off the endogenous computation of smoking impact and leave it 

constant at the initial year value. 

 

+,-

Computed
Elsewhere
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Smoking Impact (Lagged 

25 Years)

HLSMOKINGIMP

Smoking Impact 

Elasticity with Rate
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Smoking Rate
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Algorithm 

+,-

Smoking Rate Stages 
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hlsmokingstsw

Smoking Rate Stages 

Parameters

hlsmokingceiling, 

hlsmokingfloor, 

hlsmokingpeakyr,

Hlsmokingdecm, 

hlsmokingincm

Smoking Rate Multiplier

hlsmokingm

+,-
+,-

Tobacco Control Score 

Parameters

hlsmokingtcs, 

hlsmokingtcsel, 

hlsmokingtcsm

Smoking Rate Immediate 

Effect

hlsmkimeff

 
 

Smoking rate itself is computed in two different ways.  The basic formulation uses only 

the initial condition and a function linked to the simple and squared values of GDP per 

capita at PPP.  The more extended formulation is an algorithmic one based on the same 

general concept of a pattern that initially rises with GDP per capita, peaks, and then falls, 

but with a series of parameters that allow much more control over the stages.3  This 

staged algorithmic approach (see Lopez et al. 1994; Shibuya et al. 2005; Ploeg et al. 

2009) is turned on with a switch (hlsmokingstsw). 

 

Because control of tobacco is a major policy objective in many countries, there is also a 

representation of a tobacco control score on a 100-point scale (hlsmokingtcs) with an  

associated parameter to control the elasticity of smoking with that score 

(hlsmokingtcsel), as well as a multiplier on the score (hlsmokingtcsm).   

 

                                                 
3 Cecilia Peterson developed this approach for IFs. 



10 

Finally, there is a multiplier that allows direct manipulation of the smoking rate, again by 

sex (hlsmokingm). 

2.3 Proximate Drivers and Risk-Specific Population Attributable Fractions 

Although mortality can be calculated solely from distal drivers such as income and 

education, it is better to calculate it from proximate or more immediate factors, such as 

undernutrition or exposure to pollutants. But IFs, and perhaps any model, will never be 

able to represent all such proximate drivers.  Hence there is value in having an approach 

that combines the use of distal and proximate drivers, supplementing and adjusting the 

distal-driver based approach whenever possible.  

 

The figure below shows such a combination. Each proximate driver (and there are many 

different ones in IFs, in spite of the generalized representation in the figure) can be 

associated with a fraction of the mortality of a society.  That population attributable 

fraction or PAF (derivative from the risk exposure level relative to a theoretical risk 

minimum) can be used to adjust the mortality associated with any cause that would have 

an implicit risk-related mortality built into the distal driver formulation.  IFs makes those 

implicit distal-driver associated risk levels explicit by using the distal drivers to identify a 

risk level that would be expected based on cross-sectional analysis using the distal 

drivers.  That allows the computation of a distal-driver based PAF. In similar fashion a 

PAF can be calculated that relates an exposure level to the risk, calculated mostly 

elsewhere in IFs (such as in the food and agriculture model for undernutrition of children) 

to a PAF. 

 

+
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The complication mathematically lies in the interaction of (1) the distal-driver and 

proximate risk-based PAFs and (2) the multiple specific-risk PAFs, because avoidance of 
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death from one will generally increase the risk of death from others.  See the equations 

associated with PAFs for details. 

 

Among the specific risk factors treated in IFs are overly high body mass indices and 

associated obesity,  undernutrition of children, access to unsafe water and sanitation, 

indoor use of solid fuels, and levels or urban air particulates. 

2.3.1 Child Undernutrition 

Although obesity is a growing problem and killer around the world, the most important 

risk factor for children in particular has traditionally been undernutrition (often simply 

referred to as malnutrition).  The percentage of children undernourished (MALNCHP) 

affects mortality rates from communicable diseases in particular via the mechanism that 

the model uses to modify cause-specific mortality from the distal driver formulation by 

actual risk level in a country.  The core of that approach is to compare the risk-specific 

population attributable fraction (PAF) of total morality as calculated from the distal 

drivers with the PAF calculated from the actual level of the risk in the country.   

 

The figure below shows the approach for childhood undernutrition.  The two key 

variables in the distal driver formulation at any point in time (ignoring the technology 

factor that adds dynamics over time) are GDP per capita at purchasing power parity and 

years of adult education.  They are used in a cross-sectionally estimated function to 

calculate an implicit body mass index that then produces the associated implicit PAF.  IFs 

uses an alternative and more risk-factor specific formulation to forecast values of child 

undernutrition over time.  The PAF associated with this explicit representation of 

MALNCHP is compared with the PAF from the implicit calculation and the comparison 

alters the actual mortality pattern.   

 

To calculate MALNCHP the explicit formulation also uses GDP per capita, as in the 

distal formulation, but augments it with calories per capita and with access to safe water 

and sanitation (unsafe water can cause diarrheal disease and undernutrition even with 

caloric intake would be adequate).  A multiplicative parameter (malnchpm) can be used 

to change child undernutrition in scenario analysis.  Another parameter (malnchpsw) can 

be used to hold the level of undernutrition at the level of the first year, an approach useful 

for counterfactual scenario analysis.    
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Although not used in the health model, IFs contains two other measure of undernutrition.  

The first is an alternative measure of child undernutrition developed by Smith and 

Haddad (2000); MALNCHPSH is computed as a function of the ratio of female and male 

life expectancy, of female secondary school gross enrolment rate, and of access to safe 

water. The second is a measure of rate of undernutrition for the entire population 

(MALNPOPP), computed as a function only of calories per capita. 

2.3.2 Body Mass Index and Obesity 

 

The distal driver formulation used for forecasting mortality in IFs contains a country’s 

average body mass index (HLBMI) for diabetes. HLBMI also affects mortality from 

cardiovascular disease in IFs via the mechanism that the model uses to modify cause-

specific mortality from the distal driver formulation by actual risk level in a country.  The 

core of that approach is to compare the risk-specific population attributable fraction 

(PAF) of total morality as calculated from the distal drivers with the PAF calculated from 

the actual level of the risk in the country.   

 

The figure below shows the approach for body mass index.  The two key variables in the 

distal driver formulation at any point in time (ignoring the technology factor that adds 

dynamics over time) are GDP per capita at purchasing power parity and years of adult 

education.  They are used in a cross-sectionally estimated function to calculate an implicit 

body mass index that then produces the associated implicit PAF.  IFs uses an alternative 

and more risk-factor specific formulation to forecast values of body mass index over 

time.  The PAF associated with this explicit representation of HLBMI is compared with 
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the PAF from the implicit calculation and the comparison alters the actual mortality 

pattern.   

 

To calculate HLBMI the explicit formulation uses calories per capita as the sole driving 

variable.  A multiplicative parameter (hlbmim) can be used to change HLBMI in scenario 

analysis.  A forecast of the obese population as a percent of the total population 

(HLOBESITY) is driven by the body mass index. A separate multiplicative parameter 

can modify it (hlobesitym). 
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2.3.3 Indoor Use of Solid Fuels 

 

One of the most important health risk factors in the developing world, especially for 

women and children under 5 is the use of solid fuels for cooking (and heating) indoors 

(ENSOLFUEL).  It is a major cause of respiratory diseases.  In IFs it affects mortality 

rates via the mechanism that the model uses to modify cause-specific mortality from the 

distal driver formulation by using information concerning actual risk level in a country.  

The core of that approach is to compare the risk-specific population attributable fraction 

(PAF) of total morality as calculated from the distal drivers with the PAF calculated from 

the actual level of the risk in the country.   

 

The figure below shows the approach for indoor air pollution from the use of solid fuels.  

The two key variables in the distal driver formulation at any point in time (ignoring the 

technology factor that adds dynamics over time) are GDP per capita at purchasing power 

parity and years of adult education.  They are used in a cross-sectionally estimated 

function to calculate indoor air pollution (linked to solid fuel use) that then produces the 
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associated implicit PAF.  IFs uses an alternative and more risk-factor specific formulation 

to forecast values of solid fuel use over time.  The PAF associated with this explicit 

representation of ENSOLFUEL is compared with the PAF from the implicit calculation 

and the comparison alters the actual mortality pattern.   

 

To calculate ENSOLFUEL the explicit formulation also uses GDP per capita, as in the 

distal formulation, but augments it with access to electricity.  For the actual equation, see 

the topic on equations for solid fuel use in the infrastructure documentation.  A 

multiplicative parameter (ensolfuelm) can be used to change solid fuel use in scenario 

analysis.  Another parameter (ensolhldsw) can be used to hold the rate of solid fuel use at 

the level of the first year, an approach useful for counterfactual scenario analysis.    
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Major factors affecting the health impact of indoor solid fuel use are the efficiency and 

ventilation of the stoves.  The model provides a coefficient (ensfvent) for scenario 

analysis concerning those factors. 

 

Much analysis on this health issue will want to use control of solid fuel use, partly 

through the use of a multiplier (ensolfuelm).  There is also targeting of solid fuel use and 

the model provides two different kinds of targeting parameters, absolute and relative.  

The absolute (or universal) targeting allows the setting of a year (ensolfueltrgtyr) by 

which solid fuel use would be eliminated; it is available country by country.  The relative 

targeting approach, available only globally across all countries, allows the setting of a 

value based on the typical rate of solid fuel use at different levels of GDP per capita 

(estimated cross-sectionally).  A target rate (ensolfuelsetar) would normally be no higher 

than the typical rate at the country’s level of GDP per capita and could be, for instance, 
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one standard error lower than the typical rate.  An associated parameter 

(ensolfuelseyrtar) identifies the number of years over which a country would move to the 

target level.  If a country already meets or exceeds a relative target, it will not move 

(adversely) toward it.  Moreover, only the absolute or relative target should be used in 

analysis, not both together–an attempt to use both together will result in neither being 

used. 

2.3.4 Outdoor Urban Air Pollution 

 

One of the more important health risk factors in the developing and developed world 

alike, especially for middle-income industrializing countries, is the concentration of 

particulate matter of diameter 2.5 micrometers or less per cubic centimeter in urban air 

(ENVPM2PT5).4  It is a major cause of respiratory infections, respiratory diseases, and 

cardiovascular disease in adults 30 and older.  In IFs it affects mortality rates via the 

mechanism that the model uses to modify cause-specific mortality from the distal driver 

formulation by using information concerning actual risk level in a country.  The core of 

that approach is to compare the risk-specific population attributable fraction (PAF) of 

total morality as calculated from the distal drivers with the PAF calculated from the 

actual level of the risk in the country.   

 

The figure below shows the approach for outdoor urban air pollution, focusing on the 

measure of ENVPM2PT5.  The two key variables in the distal driver formulation at any 

point in time (ignoring the technology factor that adds dynamics over time) are GDP per 

capita at purchasing power parity and years of adult education.  They are used in a cross-

sectionally estimated function to calculate outdoor air pollution that then produces the 

associated implicit PAF.  IFs uses an alternative and more risk-factor specific formulation 

to forecast values of outdoor urban air polution use over time.  The PAF associated with 

this explicit representation of ENVPM2PT5 is compared with the PAF from the implicit 

calculation and the comparison alters the actual mortality pattern.   

 

To calculate ENVPM2PT5 the explicit formulation also uses GDP per capita, as in the 

distal formulation, but augments the spending of a country on health as a portion of GDP 

(which appears to serve reasonably well as a proxy for more general attention to the 

environment).  For the actual equation, see the topic on outdoor urban air pollution 

equations in the health documentation.  A multiplicative parameter (envpm2pt5m) can be 

used to change urban air pollution in scenario analysis.  Another parameter 

(envpm2hldsw) can be used to hold the level of urban air pollution at the level of the first 

year, an approach useful for counterfactual scenario analysis.    

 

                                                 
4 Initialized in IFs by converting World Bank data on PM10 concentrations. 

. 
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2.3.5 Water and Sanitation 

 

Although unsafe water and sanitation is a killer via its contribution to undernutrition of 

children in particular, it creates its own mortality risk especially via diarrheal disease. 

The variables of importance in IFs are access to safe water (WATSAFE) and safe 

sanitation (SANITATION).  In IFs they affect mortality rates via the mechanism that the 

model uses to modify cause-specific mortality from the distal driver formulation by using 

information concerning actual risk level in a country.  The core of that approach is to 

compare the risk-specific population attributable fraction (PAF) of total morality as 

calculated from the distal drivers with the PAF calculated from the actual level of the risk 

in the country.   

 

The figure below shows the approach for safe water and sanitation.  The two key 

variables in the distal driver formulation at any point in time (ignoring the technology 

factor that adds dynamics over time) are GDP per capita at purchasing power parity and 

years of adult education.  They are used in a cross-sectionally estimated function to 

calculate unsafe water and sanitation that then produces the associated implicit PAF.  IFs 

uses alternative and more risk-factor specific formulations to forecast values of safe 

access to water and sanitation over time.  The PAF associated with this explicit 

representation of WATSAFE and SANITATION (in combination) is compared with the 

PAF from the implicit calculation and the comparison alters the actual mortality pattern.   

 

To calculate WATSAFE and SANITATION (separately) the explicit formulation also 

uses both average years of adult education and GDP per capita, as in the distal 

formulation, but augments those with the spending of a country on health as a portion of 

GDP (which appears to serve reasonably well as a proxy for more general attention to the 
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environment) and portion of the citizenry living on less than $1.25 per day.  For the 

actual equations, see the topic on outdoor urban air pollution equations in the 

infrastructure documentation.   

 

Both access to safe water and to safe sanitation have ladders of access quality ranging 

from none to household connections.  Parameters affecting them must thus take into 

account those ladders and the specific level(s) the parameter affects. Multiplicative 

parameters (watsafem and sanitationm) can be used to change access at any level on the 

two ladders (the model normalizes access across levels to assure summation to 100 

percent.   Another parameter pair (watsafehldsw and sanithldsw) can be used to hold the 

level of access at that of the first year, an approach useful for counterfactual scenario 

analysis.    
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Other parameters control targeting, both universal and relative.  With respect to absolute 

targeting, watsafetrgtval and watersafetrgtyr control those with no access to safe water 

(the proportion and the number of years to reach the target, respectively).  Similarly, 

sanitationtrgtval and sanitationtrgtyr control those with access to household 

connections.  The relative targeting approach, available only globally across all countries, 

allows the setting of a value based on the typical rate of access at different levels of GDP 

per capita (estimated cross-sectionally).  A target level (watsafenoconsetar, 

sanithhconsetar, sanitnoconsetar) would normally be no better (which could mean no 

higher or no lower) than the typical level at the country’s level of GDP per capita and 
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could be, for instance, one standard error better (higher or lower depending on the 

variable being targeted)  than the typical level.  An associated parameter 

(watsafenoconseyrtar, sanithhconseyrtar, sanitnoconseyrtar) identifies the number of 

years over which a country would move to the target level.  If a country already meets or 

exceeds a relative target, it will not move (adversely) toward it.  Only the absolute or 

relative target should be used in analysis, not both together–an attempt to use both 

together will result in neither being used. 
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2.4. Specialized Models:   

2.4.1 Deaths from AIDS and Vehicle Accidents 

AIDS deaths depend very directly on the number (or stock) of HIV-infected individuals, 

which depends in turn on the HIV-infection rate (HIVRATE). Data on HIV infection 

rates were used to compute a basic, country/region-specific rate of HIV infection increase 

(hivincrate), which the user can alter, as they can exogenous assumptions about the peak 

year of the epidemic (hivpeakyr) and the infection rate in that year (hivpeakr). If a 

country is beyond the peak year of the epidemic, control will be bringing the rate down 

over time (HIVTECCNTL).  The user may also rely upon a country/region-specific 

multiplier to move rates up or down (hivm). 
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There is both a policy and medical effort underway to reduce the growth in infections. An 

HIV technical advance rate (hivtadvr) represents the success of that in rate of reduction in 

annual infection growth, and a variable (HIVTECCNTL) shows the cumulative impact of 

changes past a peak rate and year. Although highly speculative, the user will recognize 

the long-term importance of such assumptions.  
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Turning from the infection rate to the death rate, the user can make changes in the initial 

AIDS death rate (aidsdrate) to reflect possible progress or lack of it in reducing the deaths 

from HIV (using aidsdrtadvr).  When the deaths from AIDS are computed, they are used 

to compute an incremental number of deaths (since some are already in the mortality of 

the base year); and an exogenous vector spreads them by age and sex. 

The computation of deaths from vehicle accidents starts with computing the number of 

vehicles per capita (VEHICFLPC) as a function of population density and GDP per 

capita.  That allows computation of the total number of vehicles (VEHICLESTOT).  The 

function used by IFs to compute the total number of road deaths uses the number of 

vehicles and the population.   
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2.4.2 Specialized Models: Severe Acute Malnutrition 

Severe Acute Malnutrition (SAM) (also known as severe wasting) is a deficiency of 

protein or other minerals and vitamins leading to a loss of body fats and muscle tissues. 

SAM can be defined by a Weight-for-Height Z-score <-3 compared to the median WHO 
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growth standards; by visible severe wasting; or by the presence of nutritional oedema 

(Prudhon, Briend, Prinzo, Daelmans, & Mason, 2006). It has been identified as a 

significant cause of death and disability globally (Black et al., 2008, 2013). Children with 

SAM face a risk of morbidity and mortality nine-to-eleven times greater than their 

healthy counterparts (Lenters, Wazny, & Zulfiqar, 2016; UNICEF, Nutrition Section, 
United Nations System Standing Committee on Nutrition, World Food Programme, & 
World Health Organization, 2007). SAM may result in cognitive impairment, delayed 

school enrollment, vulnerability to chronic diseases, and reduced productivity.  

A wide-range of interventions including policies to improve food security, social 

protection and supplementation exist to treat moderate forms of malnutrition. The 2015 

Global Burden of Disease Study estimates that the global prevalence of childhood 

stunting declined by 33% between 1990 and 2015 (GBD 2015 Disease and Injury 
Incidence and Prevalence Collaborators, 2016). Prevalence data used to estimate the 

global burden of SAM have fluctuated across time: 19 million (Black et al., 2008), 17.3 

million (UNICEF, WHO, World Bank, 2012), and 19 million (Black et al., 2013). Despite 

the fluctuation, these data suggest SAM remains a persistent health challenge. 

There is a consensus within the literature that SAM is the result of a combination of 

interconnected proximate (basic) and distal (underlying) factors. Proximate drivers of 

SAM include lack of access to food (Haddad & Smith, 2000), poor infant-feeding 

practices (Acharya, Choudhary, & Shekhawat, 2014), maternal health and education 

(Dereje, 2014; Haddad & Smith, 2000), and the general burden of infectious disease. 

Distal drivers of SAM include general level of economic development (Alderman, 
Appleton, Haddad, Song, & Yohannes, 2001), poverty levels (Black et al., 2013; Haddad 
& Smith, 2000), gender inequality (Bhutta et al., 2008; Mucha, 2012), conflict (Hall, 
Blankson, & Shoham, 2011), corruption (Halleröd, Rothstein, Daoud, & Nandy, 2013; 
Ngozi Uchendu & Olatunsbosun Abolarin, 2015), and poor governance (Haddad & Smith, 
2000; Halleröd et al., 2013), and transportation infrastructure (Ulimwengu, Funes, 
Headey, & You, 2009).  

The figure below shows the approach for forecasting annual SAM prevalence in the 

under 5 population (MALNCHPSAM).  The two key variables in the distal driver 

formulation at any point in time (ignoring the technology factor that adds dynamics over 

time) are GDP per capita at purchasing power parity and years of adult education.  They 

are used in a cross-sectionally estimated function to calculate an implicit body mass 

index that then produces the associated implicit PAF.  IFs uses an alternative and more 

risk-factor specific formulation to forecast values of SAM over time.  The PAF 

associated with this explicit representation of MALNCHPSAM is compared with the 

PAF from the implicit calculation and the comparison alters the actual mortality pattern.   
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The model uses UNICEF/WHO/WB joint figures on childhood malnutrition to initialize 

forecasts for SAM prevalence rates in children under the age of five (UNICEF, WHO, 
World Bank, 2016). To forecast MALNCHPSAM the explicit formulation also uses GDP 

per capita, as in the distal formulation, but augments it with average levels of education 

(UNDP, 2015), violent domestic conflict (Center for Systemic Peace, 2016), and 

governance transparency (Transparency International, 2012). A multiplicative parameter 

(malnchpsamm) can be used to change SAM in scenario analysis.  

 

MALNCHPSAM is also influenced by successful treatment. The variable for SAM 

admissions (SAMADMISSION) is initialized using data on the total national number of 

admissions provided by ACF and its partners (UNICEF, 2016). SAMADMISSION is first 

calculated as a percent of total incident cases, and forecasted as a function of GDP per 

capita at purchasing power parity (whereby higher admissions rates are driven by 

increasing GDP per capita). For OECD countries and countries with high levels of 

sanitation access (<0.05 percent of the population with unimproved sanitation) and with 

no data on admissions the model assumes that all cases of SAM are treated. For all other 

countries, initial admissions are set to 0. A multiplicative parameter (samadmissionm) 

and an additive parameter (samadmissionadd) can be used to change SAM in scenario 

analysis. We have also included a switch parameter (samadmissionsw) that allows users 
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to forecast admissions in three different ways: (0) forecasts all countries according to the 

relationship with GDPPCP, (1) holds all initial zero values constant over time (default 

value), and (2) holds all initial values constant. 

Success of treatment as a percent of all admission (SAMAVERTED) is initialized from 

the same data source (UNICEF, 2016), and assumed to be 67 percent (the global average) 

for any country with missing data. A multiplicative parameter (samavertedm) can be 

used to change SAM in scenario analysis. The model also assumes the success rate to 

converge to 100 percent over a 100-year time horizon, with a parameter 

(samavertedconvyr) that allows users to change the years to converge to 100.  

 

2.4 Forward Linkages from Health 

 

Chapter 7 of Hughes, Kuhn, Peterson, Rothman, and Solorzano (2011) elaborated the 

forward linkages of the health model to other parts of the IFs system at the time of that 

volume's completion.  It begins by discussing a controversy in the literature about 

whether the effects on economic well-being (as indicated by GDP per capita) of 

improvements in life expectancy are positive or negative.  It goes on to devote much 

attention to three major and general pathways of impact between health and GDP, each of 

which corresponds to an element in standard production functions and that in IFs.  The 

diagram below shows the major pathways between health/demography and GDP, each of 

which requires elaboration by showing the variables and logic of the IFs system; those 

three are labor, capital, and multifactor productivity.  

 

 
 

There are other potential forward linkages of health in the IFs system, many of which 

would have additional implications for economic production. Those other possible 

forward linkages include linkages of health (or lack of it) to public spending on health 
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and to education years and quality of it. Potentially there could also be a linkage in the 

system from health to economic inequality. 

2.4.1 Forward Linkages of Health to Population and  Labor Supply 

 

The IFs demographic model captures the mechanical or accounting effects of mortality 

on population (see the solid paths in the figure below).  A key pathway passes from 

mortality through adult age population to labor supply (including aging-related lags).5  

Similarly, IFs captures the mechanical effect of mortality on fertility through the death of 

women of childbearing age.   
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The most important non-mechanical linkage is almost certainly the relationship between 

child mortality and fertility. IFs forecasts fertility as a relationship with infant mortality, 

the log of educational level of those aged 15 and older (neither the education of women 

alone nor the education of those 15-24 work as well), and the percentage use of modern 

contraception. 

2.4.2 Forward Linkages of Health to Capital Stock 

 

The figure below sketches the primary paths between health (morbidity and mortality) 

and capital stock.  Most capital stock consists of buildings and machinery for producing 

goods and services; some representations may include land also, but most treat land 

separately and largely as a constant (although land developed for crop production or 

grazing can, in fact, be highly variable, as it is in the IFs agricultural model).  Most 

immediately, investment increases capital stock and depreciation reduces it.  Although 

there is certainly some impact of morbidity and mortality on the rate of depreciation of 

both built physical and natural capital, the relationship may not be substantial and we do 

                                                 
5 IFs also includes income-based formulations for changing the female participation rate. 
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not understand it well enough to model it.  Investment is responsive to both domestic 

savings and foreign flows.   

 

Turning our gaze to the paths by which health affects investment, the three major ones 

run though health spending, which can crowd out savings and investment, through the 

age-structure of societies, which affects the savings rate, and through investment from 

abroad, which can augment that generated domestically.   
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With respect to health spending, to which we return later, the IFs model uses a social 

accounting matrix (SAM) structure.  Thus the flow of funds into health spending 

automatically competes with other consumption uses and with savings and investment.  

The major current weakness of the model with respect to this path is that there is no 

linkage from morbidity (associated in IFs with mortality) and health expenditures.  

(There is a linkage in IFs back from health spending to mortality –all categories except 

for AIDS). 

The paths in IFs that link age structure most directly to domestic savings have two 

important elements.  The most fundamental one represents the understanding of life-cycle 

dynamics in income, consumption and savings.  The cycle for income is fairly clear-cut 

with a peak in the middle to latter periods of the working years.  Workers set aside some 

portion of income as savings and that portion, too, tends to peak in the middle and late 

period of working years.  Society-wide savings themselves become negative after 

retirement age (65 in the Base Case scenario but variable in scenarios) even though some 

portion of the population will continue to work. The second fundamental element is that 

both the horizon of life expectancy and the average income level of a society can have an 

impact on the portion set aside for savings and the degree to which it rises and then falls.  

Thus, for example, the life-cycle “bulge” of savings may be earlier and flatter in 

developing countries.  

 

We implemented the representation of savings and investment in accord with that 

understanding.  Relying upon analyses of selected countries that Fernández-Villaverde 

and Kruegger (2004 and 2005) and Deaton  and Paxson (2000) undertook, we extracted 
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general stylized patterns of the savings life cycle to represent more and less developed 

(and lower life expectancy) countries. In forecasting we use the pattern for less developed 

countries when life expectancy falls below 40 years, use that for more developed 

countries when life expectancy exceeds 80 years, and interpolate in between for all other 

countries.  The result of this largely algorithmic approach6 is an adjustment factor 

(SavingsAgeAdj) that augments or reduces investment.  

 

In addition, investment is somewhat augmented or reduced as a direct result of changing 

life expectancy.  Life expectancy is compared over time with an expected value (tied to 

cross-sectional estimation with income).  That difference is compared to the difference in 

the initial year and, if it rises, augments investment. 

 

Although conceptually tied to savings rates, neither the life-cycle analysis nor the life-

expectancy term directly affect savings in IFs.  Instead, they affect investment directly 

and savings indirectly via the dynamics in IFs that balance savings and investment over 

time. 

 

The path linking health to foreign direct investment is potentially quite important.  Alsan, 

Bloom and Canning (2006: 613) reported that one additional year of life expectancy 

boosts FDI inflows by 9 percent, controlling for other variables.  We have implemented 

that relationship in IFs.  The representation of FDI in IFs captures the accumulation over 

time of FDI inflows in stocks of FDI, as well as the accumulation of FDI outflows in 

stocks.  In addition, the stocks set up their own dynamics, including the tendency for 

stocks to reinforce flows.  For that reason, we have set the base case parameter for the 

impact of each year of life expectancy on FDI flows to 0.05 (5 percent), lower than the 

estimate of Alsan, Bloom and Canning (2006). 

2.4.3 Forward Linkages of Health to Economic Productivity 

 

Health outcomes impact productivity through a variety of pathways (see the figure 

below).  Overall the function for multifactor productivity from human capital (MFPHC) 

is a sum of terms linked to educational expenditures (GDS(EDUC)) as a portion of GDP 

and to educational attainment of adults in society (EDYRSAG15) with two more directly 

health-related terms of interest to us here, respectively from adult stunting 

(STUNTCONTRIB) and disability of those in their working years (HLYLDWORK).    

 

In the IFs health module, the prevalence of adult stunting (HLSTUNT) relates negatively 

to overall productivity via an elasticity (mfpstunt).  In extreme cases, stunting could cost 

as much as 1 percent of economic growth.   

We compute HLSTUNT in the health model itself.  We initialize adult stunting in a long-

term lagged relationship (using a moving average of 25 years) with child malnutrition 

                                                 
6 See the subroutine SavingsDemogAdj in routine Populat.bas, which draws upon table IncConSav in 

IFs.mdb  with different patterns of income, consumption, and savings for more developed countries 

(MDCs) and  less developed countries (LDCs) across age categories; in general, peaks of income, 

consumption, savings occur the in late 40s and savings turn negative at 65. 



27 

(MALNCPH) and forecast it as a function of both malnutrition and child mortality as a 

proxy for morbidity 
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Turning to disability (which is driven by mortality rates), childhood malnutrition and 

morbidity do not give rise to all of disability in working years; much also comes from 

disabilities arising during the working years. IFs therefore also calculates millions of 

years of living with disability related to mortality rates specific to the working aged-

population (HLYLDWORK).   

 

Turning to the forecasting relationship between disability and productivity, the IFs 

approach drives changes in the growth of productivity from the changing difference 

between computed and expected values of disability.  We used the world average 

disability rate as an “expected” value.  Because we have replicated the practice of the 

GBD project and kept mental health disability rates constant over time, and because 

mental health generally dominates disability, forecasts of this disability term are 

relatively stable over time. Thus analysis with respect to this variable will depend on 

scenarios that increase or decrease those disability rates.   Changes in disability levels 

(relative to expected ones) relate to change in productivity via a parameter, mfphlyld. 
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3. Health Model Equations 

The hybrid IFs model for forecasting health (using distal and proximate drivers) provides 

forecasts of age, sex and country-specific mortality rates for most of the 15 cause clusters 

it represents. The model within IFs for mortality in those cause clusters builds on the 

Global Burden of Disease (GBD) methodology, which uses mainly distal (more distant) 

drivers to project mortality.7 IFs then extends that methodology in many cases by adding 

attention to a selected set of proximate drivers. 

 

For several other causes or cause clusters (*), most of those related to communicable 

disease, the IFs system uses a variant of the distal driver approach, one that looks to a 

forecast of all communicable disease except HIV/AIDS and then subdivides that total by 

more specific disease type. 

 

For still other causes of mortality (**), it uses more specialized models totally unrelated 

to the distal driver approach. 

 

Cause Clusters in IFs8 

1. Other Group I diseases (excludes AIDS, diarrhea, malaria and respiratory 

infections)* 

2. Malignant neoplasms 

3. Cardiovascular diseases 

4. Digestive diseases 

5. Diabetes 

6. Chronic respiratory diseases 

7. Other Group II diseases (excludes malignant neoplasms, cardiovascular diseases, 

digestive diseases, diabetes, chronic respiratory diseases, and mental health) 

8. Road traffic accidents** 

9. Other unintentional injuries (excludes road traffic accidents) 

10. Intentional injuries 

11. HIV/AIDS** 

12. Diarrhea* 

13. Malaria* 

14. Respiratory Infection * 

15. Mental Health** 

 

                                                 

7 See Mathers and Loncar (2006) for a more complete description of GBD projection methods and 

rationale.   

8 The first 10 causes in this ordering were specific ones from Groups 1, 2, and 3, associated with a residual 

for the remaining causes in each group–that is, the ordering was systematic.  The subsequent addition of 

HIV/AIDS and then of diarrhea, malaria, respiratory infections, and mental health pulled additional specific 

causes from the various groups and caused the ordering of those additions and the entire list to be irregular 

with respect to groups.  At some point, we will likely re-order the causes of death into the 3 groupings. 



29 

3.1 Distal Driver Formulation 

For the basic forecast of mortality related to most of the major cause clusters (exceptions 

are deaths from HIV/AIDS and traffic accidents) we use the regression models and 

associated beta coefficients prepared for the Global Burden of Disease project (Mathers 

and Loncar 2006).  Age, sex, cause, and country-specific mortality rate is a function of 

income, adult education, technological progress, and (in specific cases) smoking impact:  

 

)ln(**))(ln(*)ln(*)ln(*)ln( ,,,54

2

321,,,,, rpkcrrrdpcrdpc SITYHCYCM     

 

M is mortality rate in deaths per 100,000 for a given age category c, sex p, cause of death 

d and country or region r. 

Y is GDP per capita at PPP  

HC (human capital) is Years of Adult Education over 25  

T is time  

SI is Smoking Impact  

 

Income and education (IFs variables GDPPCP and EDYRSAG25, respectively) are 

forecast endogenously in IFs.  Time, a proxy for technological progress, is calculated as 

calendar year minus 1900 (for example, T for the year 2001 equals 101).  Smoking 

impact, a variable meant to capture historical smoking patterns, is included only in the 

forecasts of mortality related to malignant neoplasms, cardiovascular disease, and 

respiratory disease.9  As described in section 6.3.4 of this document, IFs uses both 

historical smoking rate estimates and SI projections to 2030 (as provided by GBD 

authors) to forecast the SI variable.   

 

Using an historical database representing mortality data from 106 countries for the years 

1950-2002, the GBD calculated sex-specific regression coefficients for seven age groups 

(<5, 5-14, 15-29, 30-44, 45-59, 60-69, and 70+) and ten major cause clusters–the first ten 

in the list above (Protocol S1, 1-3).10  GBD estimations using the data from the 106 

countries created separate low- and high-income regression models (not coefficients for 

each country separately), with low income defined as GDPPCP < $3,000 in the initial 

year.  Both sets of coefficients are publicly available online.11  In IFs we spread the 

coefficients for the seven age groups across 5-year subcategories; that is, we use the same 

coefficients for each subcategory within the larger GBD ones–normalization of mortality 

within each 5-year subcategory across causes and to total mortality rates for each 

subcategory (taken from UN Population Division data) does, however, create differences 

in mortality rates across those 5-year groupings. 

                                                 
9 See Protocol S1, Mathers and Loncar 2006 for more detail on the use of smoking impact in GBD 

projections. 

10 See Table 1, Protocol S1, for the cause clusters used in the GBD 2002 and 2004 projections.  IFs does not 

use GBD coefficients for HIV/AIDS, relying instead on a structural model; mental health mortality is kept 

at a constant rate and coefficients for the other three communicable diseases (diarrhea, malaria, and 

respiratory infection) come from other sources. 

11 For regression results, see Tables S3 and S4 at 

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.0030442#s5. 
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We generally use the beta coefficients provided by GBD authors to forecast mortality 

related to six cause groups: Group I excluding detailed communicable causes, malignant 

neoplasms, digestive diseases, Group II excluding diabetes and mental health, other 

intentional injuries, and intentional injuries.  However, for a few age and Group III cause 

groups where regression models provided low predictive value, we also follow the GBD 

in keeping mortality rates constant over time instead of using the regression equations.  

Affected groups include: unintentional injuries for males older than 70; unintentional 

injuries for females older than 60; intentional injuries for males and females under 5; 

intentional injuries for males older than 60; and intentional injuries for females older than 

45.   

Although we forecast mortality by age, sex, cause, and country as in the general GBD 

equation above (and the details can be seen in the specialized displays of the model on 

mortality by age, sex, and cause and the mortality J-curve), the major model variable for 

display is DEATHCAT, which is total deaths by country/region, cause, and sex.  The 

equation for it, using the IFs variables for GDP per capita at PPP (GDPPCP), average 

years of education for adults aged 25 and older (EDYRSAG25), time (IY%), and 

smoking impact (HLSMOKINGIMP) is 

𝐷𝐸𝐴𝑇𝐻𝐶𝐴𝑇𝑟,𝑑,𝑝

= 𝐹 ((𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑟,𝑑,𝑝,𝑐 + 𝛽1 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 + 𝛽2 ∗ ln 𝐸𝐷𝑌𝑆𝐴𝐺25𝑟 + 𝛽3

∗ (ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟)2 + 𝛽4 ∗ 𝐼𝑌% + 𝛽5 ∗ ln 𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝐼𝑀𝑃𝑟,𝑝) ∗ 𝑚𝑜𝑟𝑡𝑚𝑟

∗ ℎ𝑙𝑚𝑜𝑟𝑡𝑚𝑟,𝑑) 

The betas in the equation, as indicated earlier, are from the GBD work and are 

dimensioned also by country/region r (only as high income or low income), cause of 

death d, sex p, and age category c.  The entire equation for mortality is adjusted in an 

algorithmic process so that the total across all causes of death equal the mortality rates 

from the UN Population Division’s data (using a normalization factor), while the relative 

weights for each disease match WHO data (using a scaling factor).  The normalization 

and scaling factors are multiplicative, affecting everything in the equation.  In the Base 

Case scenario we keep those factors constant, but we can control convergence of them 

(see Section 5).  

 

The equation allows scenario modification with multiplicative parameters that change 

mortality overall (mortm) or by cause of death (hlmortm).  Not shown in the equation,    

hlmortcdchldm changes the rates of all communicable diseases for children aged 5 and 

younger, while hlmortcdadltm affects rates of death from communicable diseases for 

adults aged 15-49. 

3.1.1 Forecasting income and education for the distal driver formulation 

For the basic distal driver formulation, GDP per capita at PPP (GDPPCP) and years of 

adult education (EdYrsAg25) are forecast endogenously within IFs.  GDP per capita is 

computed in the Economic Module as an annual flow variable (that is, it is generated 

anew each year), driven in part by underlying stocks such as capital supply and, in fact, 

years of adult education (both of which accrete or deplete very slowly over time). Adult 
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education is computed in the Education Module using government spending on education 

as the main driver.12 

3.1.2 Forecasting technology for the distal driver formulation of mortality 

Although two IFs variables, namely GDP per capita at purchasing power parity 

(GDPPCP) and years of adult education (EDYRSAG25) drive the distal formulation in 

most of our forecasting and scenario analysis, the technology parameter (the beta on 

time) in the distal equation is very powerful.  We therefore want some control over it, 

ideally with ability to differentiate that control with respect to level of income of 

countries and with respect to the age structure of mortality. For a basic approach to 

providing such control, we follow the Global Burden of Disease (GBD) project in 

modifying the regression models for child mortality low-income countries.  But we have 

extended that GBD approach to allow some additional parametric control. 

The control system in IFs uses a switching parameter (hlmortmodsw) in interaction with 

three other parameters (with their default values those are hltechbase=1, hltechlinc=0.25, 

and hltechssa=0); see the table below for a summary of the application of those 

parameters.   

In the default mode (hlmortmodsw = 1), IFs uses the GBD approach to modifying the 

technology (time) coefficients for children under 5 in recognition of slower than expected 

historical progress in many countries.13  Specifically, for children under 5 in low-income 

countries in four regions (Africa, Europe, SE Asia and West Pacific) the time variable is 

held constant (zero, or no technological advance, using hltechssa); in low-income 

countries in the Middle East and North Africa the coefficient on time is reduced to 25 

percent of its original value using the parameter hltechlinc.   

In the IFs implementation of the GBD approach to treatment of technology, we wished to 

change the patterns not just for children under 5, but also for older children and adults.  

We decided, however, to regularize the somewhat ad hoc assignment of countries by the 

GBD to the low-income category by defining low-income as being less than $3,000 per 

capita and high-income as being above that level.  We use the parameter hltechlinc to 

control technological change for older children and adults in low-income countries 

regardless of geographical region; at its default setting that parameter reduces the 

coefficient on time to 25 percent of its original value,  

 

                                                 
12 For a more complete description of driver forecasting in IFs, please see www.ifs.du.edu.   

13 The Global   Burden of Disease (GBD) project  made low-income modifications after recognizing that 

historical child mortality data did not match back projections of the model (Mathers and Loncar 2006b: 9).  

Note that the GBD approach to these modifications changed from the 2002 revision to the 2004 revision of 

the project. In the 2002 revision, the human capital (education) beta was reduced to half of its magnitude 

for sub-Saharan countries, and to 75 percent of its original magnitude for other low-income countries. This 

was done only if the beta on the human capital (education) term in the distal model formulation was 

negative (reducing mortality with increases in education).  Technological advance factor (time) was left 

constant (no advance) for sub-Saharan Africa and reduced to 25 percent for other low income countries.  

The 2004 revision dropped the human capital modifications, but continued to reduce the coefficient on 

time. 

http://www.ifs.du.edu/
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 Age and Geographic Impact of the Parameters 

 

Base or default values 

For Children under 5 
(GBD Geographic 
Classification) 

For older children and 
Adults (IFs Geographic 
Classification) 

hltechssa=0 

 

Low Income Countries in 
mostly 4 regions (Africa, 
Europe, SE Asia and  
West Pac; also selected 
countries such as Haiti) 

Not used 

hltechlinc = 0.25 Low Income Countries in 
the Middle East and 
North Africa 

Low Income countries 
(GDPPCP < $3k in 2010) 

hltechbase = 1 All other countries, 
mostly High Income and 
including most of Latin 
America 

High Income countries 
(GDPPCP >= $3k in 
2010) 

 

For children older than 5 and adults in what IFs classifies as high-income countries 

(countries with GDP per capita at PPP in 2010 above $3,000), IFs uses the parameter 

hltechbase.  Thus in the default situation, technological change is unchanged from the 

basic value.       

These GBD technology factor modifications (and their extensions by IFs to adults and 

older children in our definition of low- and high-income countries) can be turned off in 

the model (hlmortmodsw = 0).14 When the switch is turned on, adjustments can also be 

made to hltechbase, hltechlinc, and hltechssa to build new scenarios.15  It is important 

for the user to know, however, that regardless of age or income level of countries, the 

model uses hltechbase for mortality from cardiovascular causes (which uses a different 

regression model for forecasting).  

Changes to hltechbase can also be adjusted by using a shift parameter called hltechshift 

(0 by default), which adjusts the technology factor depending on the level of initial GDP 

per capita at PPP.  

ℎ𝑙𝑡𝑒𝑐ℎ𝑏𝑎𝑠𝑒𝑎𝑑𝑗 = 𝒉𝒍𝒕𝒆𝒄𝒉𝒃𝒂𝒔𝒆 + 𝑀𝑖𝑛(40, 𝐺𝐷𝑃𝑃𝑃𝐶i𝑟 ∗ 𝒉𝒍𝒕𝒆𝒄𝒔𝒉𝒊𝒇𝒕)/40 

This adjustment increases the technology factor for high income countries more quickly 

than for middle or low-income countries 

                                                 
14 Although not recommended, IFs also allows the user to use the original GBD 2002 modifications (as 

described in a previous footnote) by specifying hlmortmodsw = 2. 

15 Given the results found for Intentional Injuries, where mortality was reaching unrealistic levels, we have 

limited the changes to hltechbase and hltechlinc to at most 1.5 for this particular cause of death in the 2004 

revision (hlmortmodsw = 1). 
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3.2 Diabetes and Chronic Respiratory Diseases  

Two chronic cause groups, diabetes and respiratory, are so strongly influenced by 

specific risk factors that estimates based on distal drivers alone fail to accurately 

represent expected mortality rate trajectories.  In the case of diabetes, rising population 

levels of overweight and obesity contradict suggestions that diabetes-related mortality 

will fall over time in line with other Group II causes.  Conversely, declining smoking 

rates in many high income countries may temper projections of increasing chronic 

respiratory-related mortality (Protocol S1, 5-6).  Therefore, IFs follows the GBD methods 

in modifying the distal driver formulation by adding proximate risk factors (BMI and SI, 

respectively) to forecast base diabetes- and chronic respiratory-related mortality rates.  

3.2.1 Diabetes  

To forecast diabetes, IFs uses the following formula: 

 

𝑀𝑟,𝑑=𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠,𝑐,𝑝 = 𝐻𝐿𝐷𝐼𝐴𝐵𝐸𝑇𝐸𝑆𝑅𝑅𝑟,𝑐,𝑝 ∗ 𝑂𝑁𝐶𝐷𝑟,𝑐,𝑝
0.75  

 

Mr,c,d=Diabetes,p,r is diabetes-related mortality by country/region r, age category c, and sex p.  

ONCDr,c,p  is other Group II (non-communicable disease) mortality, derived using the 

basic distal driver equation . HLDIABETESRRr,c,p is a “Diabetes Relative Risk” factor, 

explained below. 

 

In a population at the “theoretical minimum” level of body mass index (BMI), where 

BMI is 21, diabetes-related mortality is expected to fall at 75 percent of other Group II 

mortality.16  The diabetes relative risk factor (HLDIABETESRR) captures the increased 

risk represented by a population above the theoretical BMI minimum level.  For example, 

the factor is about 1 for young females in Vietnam (where BMI is close to the theoretical 

minimum level of 21).  Comparatively, the RR is approximately 28 for middle-aged 

women in the United Kingdom where population BMI is much higher.17 

 

The GBD project projected the RR variable for diabetes out to 2030 using fairly involved 

estimates of age and sex-specific levels (plus standard deviations) of population BMI.  

Our estimates in IFs of future BMI (HLBMI) are less sophisticated, and we only forecast 

country/region (r) and sex-specific (p) mean BMI (see section 6.3.2 for a description of 

our forecasts of BMI).  As such, while we endogenize the RR variable by tying it to our 

forecasts of BMI, we also adjust our forecast by initializing RR using the GBD estimates 

for the year 2010 and computing an age-category specific shift factor (HLDIABSHIFT) 

in order to tie our forecast of expected RR with GBD estimates.   

 

                                                 
16 The slower decrease in diabetes-related mortality reflects assumptions that risk factors for diabetes will 

improve more slowly that risk factors for other Group II diseases (Protocol S1, 6). 

17 All RRs available in the IFs system, variable name HLDIABETESRR. 
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The RR for diabetes forecast in IFs (HLDIABETESRR) assumes that country-specific 

BMI is distributed normally, and also assumes a standard deviation of 10% of the mean:18     

 

𝐻𝐿𝐷𝐼𝐴𝐵𝐸𝑇𝐸𝑆𝑅𝑅𝑟,𝑐,𝑝

= 𝐻𝐿𝐷𝐼𝐴𝐵𝑆𝐻𝐼𝐹𝑇𝑟,𝑐,𝑝

∗ ∫ 𝑒
((𝐻𝐿𝐵𝑀𝐼𝑟,𝑝−(

𝐻𝐿𝐵𝑀𝐼𝑟,𝑝−𝑎𝑣𝑔𝐵𝑀𝐼

𝑆𝑡𝑑𝐷𝑒𝑣 +21))∗𝐿𝑜𝑔𝑅𝑅𝑐,𝑝)

∗ 𝑃(𝐻𝐿𝐵𝑀𝐼) ∗ 𝑑𝐵𝑀𝐼 

LogRR is the change in log of RR per 1 unit change in BMI.19  These values are age 

category (c) and sex (p) specific; the absolute relative risk of diabetes-related mortality in 

relation to a unit increase in BMI varies from between 1.47 (females under 45) and 1.2 

(females over 80).20 P(HLBMI) is a normal distribution function with mean of avgBMI;  

StdDev is a fixed 10% of avgBMI.21 

3.2.2 Chronic Respiratory Disease 

Again following GBD authors, IFs separately computes the two components of the 

chronic respiratory disease category–chronic obstructive pulmonary disease (COPD) 

(where smoking is the overwhelming related risk factor) and “other” respiratory disease 

(where smoking is somewhat less determinative). Both elements follow the same 

formulation: 

 

𝑀𝑟,𝑑=𝑐ℎ𝑟𝑜𝑛𝑖𝑐 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑖𝑠𝑒𝑎𝑠𝑒,𝑐,𝑝

= ln ((𝑆𝐼𝑅𝑟,𝑐,𝑝 ∗ 𝐶𝑅𝐷𝑅𝑅𝑐,𝑝,𝑑 + 1 − 𝑆𝐼𝑅𝑟,𝑐,𝑝)

∗ (𝑒𝑂𝑁𝐶𝐷_𝑀𝑂𝑅𝑇𝑑=𝑂𝑡ℎ𝑒𝑟 𝐺𝑟𝑜𝑢𝑝 𝐼𝐼)0.75) 

where 

 

𝑆𝐼𝑅𝑟,𝑐,𝑝 =
𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝐼𝑀𝑃𝑟,𝑐,𝑝

𝑆𝑀𝑂𝐾𝐼𝑀𝑃𝐴𝐷𝐽𝑟=𝑡ℎ𝑟𝑒𝑒 𝑟𝑒𝑔𝑖𝑜𝑛𝑠,𝑐,𝑝
 

 

SIR is the “smoking impact ratio, ”  that is smoking impact in IFs (HLSMOKINGIMP) 

divided by an adjustment factor that is specific to three big regions (1. China, 2. World, 

and 3. SearD (Bangladesh, Bhutan, India, North Korea, Maldives, Myanmar, Nepal, 

                                                 
18 We recognize, of course, that BMI is most likely not distributed normally in a population.  However, we 

follow CRA authors in assuming normality in order to compare a given population with an ideal 

counterfactual population (James et al 2004).   

19 WHO Comparative Risk Assessment Methodology, Kelly et al, 2009 

20 See associated data table, Kelly et al 2009. 

21 avgBMI is our forecast of BMI, while BMI are the values from -3 standard deviations to +3 standard 

deviations away from that avgBMI. Cecilia Peterson determined the fixed 10 percent rate for StdDev from 

the literature. 
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Afghanistan, Pakistan)),22  age category c, gender p. CRDRR is the relative risk for 

chronic respiratory disease specific to age category c, gender p, and disease/death d type 

(COPD or other respiratory disease).23  Chronic respiratory disease is assumed to be 

declining at 75 percent of ONCD_Mort, which is other Group II related mortality. 

 

3.3 Diarrhea, Malaria, and Respiratory Infections 

IFs added three additional communicable diseases, namely diarrhea, malaria, and 

respiratory infection, after it had developed the modelling approach for distal drivers 

discussed above.  The model uses the more general Group I (communicable disease and 

maternal mortality excluding AIDS) forecast to project mortality related to all three 

additions:
 

1,,,,1,,,,1,,,,1,,, ln*)ln(   dgpcrddgpcrddgpcrddgpcr MCM 
   

 

M is mortality rate in deaths per 100,000 for a given region r, age category c, sex p, 

general (Group 1) cause dg=1 and specific disease d within general cause group dg=1. 

Here dg=1 refers to all communicable diseases (other than HIV/AIDS because Mathers 

and Loncar 2006 did not use the same approach to that particular communicable disease) 

and d refers to diarrhea, malaria or respiratory infections.  

 

The constants and beta coefficients for the above equation for the three diseases come 

from Mathers and Loncar (2005 and 2006c).24 For diarrhea and malaria we used their 

coefficients for infectious and parasitic diseases (Mathers and Loncar 2005: Table A-6 on 

page 115); for respiratory infections we used their coefficients for respiratory infections 

specifically (Mathers and Loncar 2006c, Table S5). 

 

The results for these three subtypes are then subtracted from the mortality for the total 

Group I category (except HIV/AIDS). The reason for this is to make sure that the sum of 

all them does not exceed the total of Group 1 (excluding HIV/AIDS), which is a result 

the equation could theoretically produce.  In fact, we want to be sure that there is room 

for the Other Group 1 cause of death, so IFs limits the sum for diarrhea, malaria, and 

respiratory infection to 95 percent of the total of Group 1 (excluding HIV/AIDS).   If 

necessary, all three subcategories are reduced proportionally by a factor of 0.95/(SUM(3 

subtypes)/Tot(big type)). Note that, if this restraint needs to be imposed, the denominator 

                                                 
22 GBD authors provided the adjustment factor for SIR, and it is constant over the length of the IFs forecast. 

The computation is done with the hard-code value in a procedure called UpdateRespDisease.  The name for 

SmokingImpactAdj in the model is sird.  CRDRR is hard-code in the same procedure. 

23 RR ranges from approximately 10 for COPD to about 2 for other chronic causes.  Again, GBD authors 

provided the relative risk estimates used in IFs.   

24 The extended process for using those is described in 2 working notes for the IFs project by Dale 

Rothman, Dealing with Diarrhoeal Diseases Including the Effects of Unsafe Water & Sanitation and 

Undernutrition (March 25, 2009) and Dealing with Effects of Indoor Air Pollution 

(October 8 2009).  Titles of the files are Incorporating Diarrhoea 25 March 2009 and Incorporating Indoor 

Air Pollution 9 October 2009, respectively. 
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will always be higher than 0.95 and then the multiplicative adjustment factor will always 

be lower than 1. 

 

3.4 HIV/AIDS 

The ultimate objective of the calculations around HIV infections and AIDS is to forecast 

annual deaths from AIDS (AIDSDTHS) by age category and sex.  We did not look to the 

forecast methodology of Mathers and Loncar (2006) for their approach on this particular 

communicable disease; in fact, they also used an approach that did not rely upon the 

general distal driver formulation. 

 

The IFs approach begins by forecasting country-specific values for the HIV prevalence 

rate (HIVRATE).  For the period from 1990-2007 we have reasonably good data and 

estimates from UNAIDS (2008) on prevalence rates and have used values from 2004 and 

2006 to calculate an initial rate of increase (hivincr) in the prevalence rate across the 

population (which for most countries is now negative).25  

 

There will be an ultimate peak to the epidemic in all countries, so we need to deal with 

multiple phases of changing prevalence:  continued rise where rates are still growing 

steadily, slowing rise as rates peak, decline (accelerating) as rates pass the peak, and 

slowing rates of decline as prevalence approaches zero in the longer term.  In general, we 

need to represent something of a bell-shaped pattern, but one with a long tail because 

prevalence will persist for the increasingly long lifetimes of those infected and if pockets 

of transmission linger in selected population sub-groups.26  As a first level of user-control 

over the pattern, we add scenario specification via an exogenous multiplier on the 

prevalence rate (hivm).   

The movement up to the peak involves annual compounding of the initial growth rate in 

prevalence (hivincr), dampened as a country approaches the peak year.  Thus we can 

further control the growth pattern via specification of peak years (hivpeakyr) and 

prevalence rate in those peak years (hivpeakr), with an algorithmic logic that gradually 

dampens growth rate to the peak year:27 

                                                 
25 The HIV/AIDS data were being update in October, 2013. The IFs pre-processor calculates initial rates of 

HIV prevalence and annual changes in it using the middle estimates of the UNAIDS 2008 data.  When 

middle estimates do not exist, as in the case of the Democratic Republic of Congo, it uses an average of 

high and low estimates.  The system uses data for total population prevalence, but also includes HIV 

prevalence for those 15-49.  

26 A more satisfactory approach would use stocks and flows and have a more strongly systems dynamics’ 

character.  It would track infected individuals, presumably by age cohorts, but at least in the aggregate.  It 

would compute new infections (incidence) annually, adding those to existing prevalence numbers, 

transitioning those already infected into some combination of those manifesting AIDS, those dying, and 

those advancing in age with HIV.  But the data do not seem widely available to parameterize such 

transition rates, especially at the age-category level.  

27 Table 17 (pp 77-78) of the Annex to World Population Prospects: the 2002 Revision (UNPD 2003) 

provided such estimates for 38 African countries and selected others outside of Africa; the IFs project has 

revised and calibrated many of the estimates over time as more data have become available.  By 2004-
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𝐻𝐼𝑉𝑅𝐴𝑇𝐸𝑟,𝑡 = 𝐻𝐼𝑉𝑅𝐴𝑇𝐸𝑟,𝑡−1 ∗ (1 + ℎ𝑖𝑣𝑖𝑛𝑐𝑟𝑟,𝑡) ∗ 𝒉𝒊𝒗𝒎𝑟 

where 

ℎ𝑖𝑣𝑖𝑛𝑐𝑟𝑟,𝑡 = 𝐹(𝒉𝒊𝒗𝒊𝒏𝒄𝒓𝑟,𝑡=1, 𝒉𝒊𝒗𝒑𝒆𝒂𝒌𝒚𝒓𝑟 , 𝒉𝒊𝒗𝒑𝒆𝒂𝒌𝒓𝑟) 

 

t is time, r is country or region.  Names in bold are exogenously specified parameters. 

 

As countries pass the peak, we posit that advances are being made against the epidemic, 

both in terms of social policy and technologies of control, at a speed that reduces the total 

prevalence rate a certain percent annually (hivtadvr).  To do this, we apply to the 

prevalence rate an accumulation of the advances (or lack of them) in a technology/social 

control factor (HIVTECCNTL).  In addition, if decline is already underway in the data 

for recent years, we add a term based on the initial rate of that decline (hivincr), in order 

to match the historical pattern; that initial rate of decline decays over time and shifts the 

dominance of the decline rate to the exogenously specified rate (hivtadvr).  This 

algorithmic formulation generates the slowly accelerating decline and then slowing 

decline of a reverse S-shaped pattern with a long tail:    

 

𝐻𝐼𝑉𝑅𝐴𝑇𝐸𝑟,𝑡 = 𝐻𝐼𝑉𝑅𝐴𝑇𝐸𝑟,𝑡−1 ∗ (1 − 𝐻𝐼𝑉𝑇𝐸𝐶𝐶𝑁𝑇𝐿𝑟,𝑡)  
where 

𝐻𝐼𝑉𝑇𝐸𝐶𝐶𝑁𝑇𝐿𝑟,𝑡 = 𝐻𝐼𝑉𝑇𝐷𝐶𝐶𝑁𝑇𝐿𝑟,𝑡−1 ∗ (1 + 𝒉𝒊𝒗𝒕𝒂𝒅𝒗𝒓 ∗
𝑡

100
) + 𝐹(𝒉𝒊𝒗𝒊𝒏𝒄𝒓𝑟,𝑡=1) 

 

Finally, calculation of country and region-specific numbers of HIV prevalence is simply 

a matter of applying the rates to the size of the population number. 

 

𝐻𝐼𝑉𝐶𝐴𝑆𝐸𝑆𝑟,𝑡 = 𝑃𝑜𝑝𝑟,𝑡 ∗ 𝐻𝐼𝑉𝑅𝐴𝑇𝐸𝑟,𝑡 

 

The rate of death to those with HIV would benefit from a complex model in itself, 

because it varies by the medical technology available, such as antiretroviral therapy 

(ART) and the age structure of prevalence.  We have simplified such complexities 

because of data constraints, while maintaining basic representation of the various 

elements.  Because the manifestation of AIDS and deaths from it both lag considerably 

behind the incidence of HIV, we link the death rate of AIDS (HIVAIDSR) to a 10-year 

moving average of the HIV prevalence (HIVRateMAvg).  We also posit an exogenously 

specified technological advance factor (aidsdrtadvr) that gradually reduces the death rate 

of infected individuals (or inversely increases their life span), as ART is doing.  And we 

allow the user to apply an exogenous multiplier (aidsratem) for further scenario analysis: 

 

𝐴𝐼𝐷𝑆𝐷𝑅𝐴𝑇𝐸𝑟,𝑡

= 𝐻𝐼𝑉𝑅𝑎𝑡𝑒𝑀𝐴𝑣𝑔𝑟,𝑡 ∗ 𝐻𝐼𝑉𝐴𝐼𝐷𝑆𝑅𝑟,𝑡=1 ∗ (1 −
𝒂𝒊𝒅𝒔𝒅𝒓𝒕𝒂𝒅𝒗𝒓𝑟,𝑡

100
)

∗ 𝒂𝒊𝒅𝒔𝒓𝒂𝒕𝒆𝒎𝑟,𝑡 

where 

                                                 
2006, however, quite a number of countries had begun to experience reductions, and this logic has become 

less important except in scenario analysis for countries where prevalence is still rising. 
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𝐻𝐼𝑉𝑅𝑎𝑡𝑒𝑀𝐴𝑣𝑔𝑟,𝑡 = 𝐹(𝐻𝐼𝑉𝑅𝐴𝑇𝐸𝑟,𝑡 , last 10 years) 

 

We spread this death rate across sex and age categories. We apply a user-changeable 

table function to determine the male portion as a function of GDP per capita (at PPP), 

estimating that the male portion rises to 0.9 with higher GDP per capita.28  To specify the 

age structure of deaths, we examined data from large numbers of studies on infections by 

cohort in Brazil and Botswana (in a U.S. Census Bureau database) and extracted a rough 

cohort pattern (aidsdeathsbyage) from those data.  

3.5 Cardiovascular Disease 

The regression models used in the GBD project did not differentiate between-subject 

from within-subject variation.  Particularly for cardiovascular-related outcomes in some 

age/sex groups, this model produced a perverse finding: a negative relationship between 

cardiovascular-related mortality and smoking impact (HLSMOKINGIMP).  However our 

further statistical investigation showed, as expected, a positive relationship between 

cardiovascular-related mortality and HLSMOKINGIMP within a given country over 

time.   

As such, we completed a more sophisticated mixed model regression analysis (using 

SAS, version 9.1) to capture both within and between-subject effects.  We used the GBD 

mortality database described in section 5, supplemented by our historical series of income 

per capita29.  All distal drivers were included as fixed effects, with random effects 

included for subject (country) and time (T).  The revised coefficients (see Appendix 

Table 1) were used to forecast cardiovascular disease-related mortality.  We created only 

one model for all countries (no separate low-income model) due to lack of data.  

Comparison with the original GBD models reveals fairly similar forecast outcomes 

overall.  However, the positive change in the smoking/cardiovascular mortality 

relationship allows us to better examine how smoking intervention scenarios might 

impact cardiovascular-related mortality. 

3.6 Road Traffic Accidents 

In forecasting mortality related to road traffic accidents, IFs replaces the GBD regression 

model with a structural formulation designed to better capture relevant drivers for this 

cause group.  Specifically, IFs projects deaths due to traffic accidents (DEATHCAT, 

Traffic) as a function of deaths in traffic per vehicle (DEATHTRPV) and vehicle 

numbers (VEHICLESTOT), both computed in the automobile module of IFs.   We first 

need to compute the total size of the vehicle fleet. 

Total vehicles per capita (VEHICFLPC) is based on a formula proposed in a paper by 

Dargay et al (2007) in which fleet size per capita is a function of GDP per capita at PPP 

                                                 
28 Early epidemic data from sub-Saharan Africa and the United States supported this assumption. 

29 Note that we did use historical estimates of education provided by the GBD project, instead of using the 

less complete historical series available through IFs.  Future distal driver analysis may explore using 

alternate sets of education data, including those included in the IFs system.   
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(GDPPCP).  Translating the Dargay et al (2007) equation into one using IFs variable 

names yields:30  

𝑉𝐸𝐻𝐼𝐶𝐹𝐿𝑃𝐶𝑟 = (852 − 𝑅𝐹) ∗ 𝑒(−5.987∗𝑒(−0.2∗𝐺𝐷𝑃𝑃𝐶𝑃𝑟)
∗  𝒗𝒆𝒉𝒊𝒄𝒇𝒑𝒄𝒎 

The parameter vehicfpcm allows scenario intervention. RF is an adjustment factor that 

compensates for different land densities, that is the ratio of population (POP) to land area 

(LANDAREA), taking the U.S. as the base:  

𝑅𝐹 = 38.8 ∗ (
𝑃𝑂𝑃𝑟

𝐿𝐴𝑁𝐷𝐴𝑅𝐸𝐴𝑟
−

𝑃𝑂𝑃𝑟=𝑈𝑆𝐴

𝐿𝐴𝑁𝐷𝐴𝑅𝐸𝐴𝑟=𝑈𝑆𝐴
) 

The computation was only used when country R had higher density than the US. The 

paper also describes another adjustment factor related to urbanization as percentage of 

total population, but we did not use this additional adjustment factor in our model. 

Given fleet size per capita and the population, we compute the total size of the fleet. 

𝑉𝐸𝐻𝐼𝐶𝐿𝐸𝑆𝑇𝑂𝑇𝑟 = 𝑉𝐸𝐻𝐼𝐶𝐿𝐸𝐹𝐿𝑃𝐶𝑟 ∗ 𝑃𝑂𝑃𝑟 

 

The number of deaths per vehicle is based on Smeed’s Law31, an empirical rule originally 

proposed by R.J. Smeed, which relates deaths to vehicle ownership.  In the original 

conceptual form Smeed’s Law is: 

3

1

2 )(0003.0 npD   

D is annual road deaths 

n is number of vehicles 

p is population 

 

In terms of IFs variable names this would translate literally (ignoring some unit issues) as: 

 

𝐷𝐸𝐴𝑇𝐻𝐶𝐴𝑇𝑟,𝑑=𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐴𝑐𝑐 = 0.0003 ∗ (𝑉𝐸𝐻𝐼𝐶𝐿𝐸𝑆𝑇𝑂𝑇𝑟 ∗ 𝑃𝑂𝑃𝑟
2)1/3 

 
The actual representation in IFs involves two steps.  First we calculate the death rates per 

vehicle, adding a division by a multiplicative term that is equivalent to total vehicle 

numbers VEHICLESTOT.  One of the virtues of this first step is that we can add an 

exogenous multiplier for death rates per vehicle, deathtrpvm. 

 

DEATHTRPV𝑟 =
0.0003 ∗ (𝑉𝐸𝐻𝐼𝐶𝐿𝐹𝐿𝑃𝐶𝑟 ∗ 1𝐸 + 15 ∗ 𝑃𝑂𝑃𝑟

3)1/3

𝑉𝐸𝐻𝐼𝐶𝐹𝐿𝑃𝐶𝑟 ∗ 𝑃𝑂𝑃𝑟
 ∗ 𝒅𝒆𝒂𝒕𝒉𝒕𝒓𝒑𝒗𝒎  

 

                                                 
30 Dargay, Gately, and Sommer 2007. “Vehicle Ownership and Income Growth, Worldwide: 1960-2030”. 

Joyce Dargay, Dermot Gately and Martin Sommer, January 2007. 

31 http://en.wikipedia.org/wiki/Smeed%27s_law 

Smeed, RJ 1949. "Some statistical aspects of road safety research". Royal Statistical Society, Journal (A) 

CXII (Part I, series 4). 1-24. 

Adams 1987. "Smeed's Law: some further thoughts." Traffic Engineering and Control (Feb) 70-73 

http://en.wikipedia.org/wiki/Smeed%27s_law
http://en.wikipedia.org/wiki/Royal_Statistical_Society
http://www.geog.ucl.ac.uk/~jadams/PDFs/smeed's%20law.pdf
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The second step is to use the death rate per vehicle, the vehicle fleet size per capita, and 

information on the age and sex distribution of deaths from vehicles to compute the 

mortality rate from vehicle accidents by age and sex, putting the results into a variable 

internal to model named modmordstdet.  In a third step that variable is used with 

population by age and sex to compute the total deaths from vehicle accidents 

(DEATHCAT).  These second and third steps stylistically yield 

 

𝐷𝐸𝐴𝑇𝐻𝐶𝐴𝑇𝑟,𝑑=𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐴𝑐𝑐 = 𝐷𝐸𝐴𝑇𝐻𝑇𝑅𝑃𝑉𝑟 ∗ 𝑉𝐸𝐻𝐼𝐶𝐿𝐸𝑆𝑇𝑂𝑇𝑟 

 

After initialization in the base year (using GBD estimates of road traffic-related mortality 

and total vehicles from the automobile module in IFs), IFs calculates a multiplicative 

shift factor that is kept constant for the entire forecast horizon. If this initialization value 

is greater than 40 deaths per 1000 vehicles, we adjust the number of vehicles per capita to 

set 40 as our initialization value. We started using this limit after finding inconsistencies 

between estimates derived from Smeed’s Law and those from initial estimates.32 

IFs also computes a ratio (in a variable internal to the model) of traffic accident mortality 

for males compared to females.   The model converges that ratio to 1.5 over 100 years by 

preserving the total mortality for each age category but adjusting the distribution between 

males and females. 

3.7 Mental Health 

The IFs model assumes that the initial rate of mortality related to mental health remains 

constant across our forecast horizon.  That rate is subtracted from the other Group II 

category.  The scenario parameter hlmortm allows the user easy control over mortality 

from the cause. 

 

                                                 
32 The case of Bangladesh is illustrative, where the forecast calculation of 141 

deaths/thousand vehicles contrasts with an expectation of 30 deaths/thousand vehicles  

using Smeed’s Law.  We concluded that our mortality figures were consistent with WHO 

estimates, but sometimes the total number of vehicles was too low.  For example, for 

Bangladesh our data showed 1 vehicle per thousand people, which meant about 141,000 

vehicles, when several reports indicate the real number is much higher (850,000) 

(http://www.brta.gov.bd/pdf/Statistics%202005.pdf). 

 

http://www.brta.gov.bd/pdf/Statistics%202005.pdf
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4. Modifications to the Basic Health Model 

 

After examining in IFs the long-term behavior of the regression model forecasts using the 

Global Burden of Disease (GBD) distal driver approach and coefficients, we made a 

limited number of modifications.  One set of modifications was made to the treatment of 

the technological change term in the distal formulation (see Section 3.1.2). We also allow 

countries to transition from low-income status, given expected improvements in 

development status over the long-term.  An adjustment for monotonicity ensures that the 

forecast population comports with well-known patterns of rising chronic-cause mortality 

rates with age.  Finally, we include health spending in our model in order to better 

forecast potential outcomes. 

4.1 Mortality Transition for Low-Income Countries 

As described in the discussion of distal driver coefficients for low-income countries we 

use Global Burden of Disease (GBD) regression coefficients developed separately for 

low and high income countries.  However, given the long forecast horizon of IFs, we 

recognize that many low-income countries eventually will reach high levels of income 

and thus should follow a similar pattern of mortality.  Therefore, we allow low-income 

countries to transition gradually by computing two mortality rates for low-income 

countries˗one using the low-income beta coefficients and the other using the high-income 

model. We start the transition when countries reach GDPPCP of $3,000, and finish the 

transition when countries reach $15,000. The transition is computed finding target 

mortality in between the two, interpolating depending on the current level of GDPPCP 

 

Given the target mortality, we compute how much change we need from current mortality 

(low-income based), and slowly adjust using a moving average of 20 percent of current 

required change and 80 percent of change used in previous years: 

 

Change = Target Mortality – Low Income Mortality 

Smooth Change = 0.2 * Change + 0.8 * Last Year Change 

Final Mortality = Low Income Mortality + Maximum(Smooth Change, Change) 

where Last Year Change = Maximum(Smooth Change(yr-1), Change(yr-1)).  

 

Note that most of the time target mortality is lower than low income mortality, and thus 

change is negative.  Thus, when we find the maximum we are finding the smaller 

absolute number and smoothing change. 

4.2 Maintaining Increase with Age in Non-Communicable Death Rates 

In general, both in our initial conditions and forecasts, we try to maintain monotonicity in 

growth of death rates from chronic causes with increasing age (above 45) by adjusting 

deaths from a particular cause when initial computations do not illustrate increases with 

age and compensating in death rates from an alternative cause for which initial 

computations indicate room for mortality reduction while (a) maintaining monotonicity 

for that cause also and (b) not changing total mortality in the pair of causes.33 If necessary 

                                                 
33 The changes described here for monotonicity with age do not guarantee monotonicity of changes in rates 

over time within an age category.  In fact, they could contribute to some small transients or irregularities in 
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we also work to make acceptable adjustments in one age category by readjusting the next 

age category for the same cause of death, decreasing deaths in the younger age category 

and increasing deaths in the older one, while doing the opposite for the compensating 

cause of death. Finally, in this overall and quite complicated algorithmic process we try 

to minimize the adjustments made to the initial calculations of mortality. 

 

To elaborate this process further, when we find for a chronic cause of death a 

monotonicity problem for a country and a given age category relative to the next younger 

category, we find the type (H1) with the highest mortality rate (in the 100+ category 

among non communicable disease),34 then we try to use H1, which often turns out to be 

cardiovascular disease, to compensate adjustments in other types in order to keep total 

mortality constant for the same age category.  

 

For each 5-year age category starting at 45 to 49, we compute total mortality as the sum 

of all types, then for each non-communicable type with non-zero mortality we compute 

its growth G from the current age category j to the next j+1, for example in the first step 

from 45-49 to 50-54. Although our emphasis is on avoiding non-monotonicity, we also 

would like to see some regularity of progression of mortality increase with age, as we 

find in the quite high-quality data of Sweden. Thus we also look to that progression in 

Swedish data for a rate of increase of across age categories that we can use as a 

minimum. Specifically, across two adjacent age categories  we find a Proxy growth P, 

where we use Sweden’s mortality for each type, but we do not allow this P to be higher 

than 1/4th of Total Mortality Growth. If G is smaller than P then we start the procedure 

for the given age category j and type of mortality d.35 

 

Once we start the adjustment procedure we check if there is room to reduce mortality in 

the current age and type, so we check growth from the previous age category to avoid 

breaking monotonicity. First we compute Proxy Growth P1 from the previous age 

category j-1 (40-44 for our example) to the current one j (45-49).  

 

Second we compute the minimum acceptable value for current mortality: 

 

𝑀𝑖𝑛 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗−1,𝑑 ∗ (1 + 𝑃1) 

 

                                                 
rates over time.  In general, however, we believe that they will make such behavior less likely. For such 

irregularities, see the longitudinal curve in Afghanistan for cancer at 80-84 males; these are most likely to 

appear, as they would in the real world, when total mortality is not changing much over time.    

34 In specialized work looking at low senescent aging the last category is 200+. 

35An example can illustrate. Say male mortality is 0.5 for Cancer at 45-49, and 1.1 for 50-54, then P is 

140% (these are numbers from Sweden). Say total male mortality is 10.1 for 45-49 and 14.5 for 50-54, so 

total growth is 43%. (These are numbers for any country, say Afghanistan). We can’t use P of 140% on 

Afghanistan for male cancer, given that for those ages Total Mortality grows only 43%, so we use a Proxy 

(P) of 11% (43*.25), for male cancer in Afghanistan between ages 45-49 and 50-59. G is the actual growth 

in mortality for male cancer in Afghanistan between ages of 45-49 and 50-54; say for example: 0.7664, 

1.2876 respectively, so G is 68%.  In this example, there is no need to change anything (68 > 11). Only if G 

is smaller than P does the adjustment process begin. 
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where 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗−1,𝑑 is the mortality for country r, type d in age category j-1.  

 

Third we compute maximum acceptable value for current mortality, we start with: 

 

𝑀𝑎𝑥 =
𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑

1 + 𝑃
 

 

But we know that 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗−1,𝑑 is also going to change to keep the number of deaths 

constant, so we also consider this adjustment: 

 

𝑀𝑎𝑥 =

𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑 + 𝐴𝑑𝑗 ∗
𝑃𝑜𝑝𝑟,𝑎=𝑗

𝑃𝑜𝑝𝑟,𝑎=𝑗+1

(1 + 𝑃)
 

 

 

And we know that: 

𝐴𝑑𝑗 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑 − 𝑀𝑎𝑥 

 

 

Solving for max, we have: 

𝑀𝑎𝑥 =

(𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑 + 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑 ∗
𝑃𝑜𝑝𝑟,𝑎=𝑗

𝑃𝑜𝑝𝑟,𝑎=𝑗+1
)

(1 + 𝑃 +
𝑃𝑜𝑝𝑟,𝑎=𝑗

𝑃𝑜𝑝𝑟,𝑎=𝑗
)

 

 

Where Mort is the original mortality for age category j and j+1, country r, and type d. Pop 

is population for age j and country r and P is the Proxy Growth computed as explained 

above. 

 

If Min is smaller than Max, then we use Max as the new mortality in age j, in order to 

keep the adjustment as small as possible, if not that means that Max wouldn’t keep 

monotonicity from age j-1, so we start trying to adjust going backwards, given that 

frequently there’s more room in previous age categories. In order to start going 

backwards we keep track of the first age category that it’s already saturated, i.e. that its 

growth is already the minimum possible without breaking monotonicity. If we find that 

the first saturated category is higher than the 45-49 that we started with, that means we 

have some room going backwards, so we take Max, otherwise we use Min as the new 

mortality in age j, and keep adjusting forward. The adjustment A is just the difference 

between original mortality in age j and the new chosen mortality. 

 

Adjust backwards means that we will adjust mortality in age category j2 and j2-1, where 

j2 goes from j-1 to 10 (which corresponds to 45-49). While going backwards the 

formulas for min and max change a little bit, given that the adjustment is done in the 

previous age category.  

𝑀𝑖𝑛 = (𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗2−1,𝑑 + 𝐴𝑑𝑗 ∗ 𝑃𝑜𝑝𝑎=𝑗2) ∗ (1 + 𝑃1) 
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And substituting the adjustment computed earlier (𝐴𝑑𝑗 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑 − 𝑀𝑎𝑥), 

we end up with: 

𝑀𝑖𝑛 =

(𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗2−1,𝑑 + 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗2,𝑑 ∗
𝑃𝑜𝑝𝑎=𝑗2

𝑃𝑜𝑝𝑎=𝑗2−1
)

1
1 + 𝑃1 +

𝑃𝑜𝑝𝑎=𝑗2

𝑃𝑜𝑝𝑎=𝑗2−1

 

 

 

Max gets simplified to: 

𝑀𝑎𝑥 = (
𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗2+1,𝑑

(1 + 𝑃)
) 

 

We then check for room in type H1, and if there’s enough room we adjust mortality for 

j2. If Min <= Max then we can stop, otherwise we keep going back until we reach the 45-

49 category. 

 

Fourth, we verify that, in doing compensation for type H, monotonicity is preserved too. 

In order to make this verification first we find the potential growth rate GH after applying 

adjustment A to type H. Then we compute the Proxy Growth PH for type H. If GH is 

greater or equal than PH then we can apply the adjustments if not we just leave mortality 

unchanged. 

 

Fifth, applying the adjustments to type d by subtracting the adjustment from the original 

mortality in age j for type d, and adding it up adjusted for deaths to the original mortality 

in age j+1 for type d: 

𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑 − 𝐴𝑑𝑗 

 

𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑 + 𝐴𝑑𝑗 ∗
𝑃𝑜𝑝𝑟,𝑎=𝑗

𝑃𝑜𝑝𝑟,𝑎=𝑗+1
 

 

 

Sixth, applying the adjustments to type H by adding the adjustment to original mortality 

in age j for type H, and subtracting it adjusted for deaths from the original mortality in 

age j+1 for type H: 

𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑=𝐻 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑=𝐻 + 𝐴𝑑𝑗 

𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑=𝐻 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑=𝐻 − 𝐴𝑑𝑗 ∗
𝑃𝑜𝑝𝑟,𝑎=𝑗

𝑃𝑜𝑝𝑟,𝑎=𝑗+1
 

 

Seventh, if Min is greater than Max and we couldn’t go backwards means that we took 

Min as the new mortality for age k, and it means that we still don’t have monotonicity 

because we haven’t changed age j+1 yet.  Then we need to find the new mortality value 

for j+1 using Proxy Growth: 

𝑁𝑒𝑤𝑚𝑜𝑟𝑡 = 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗,𝑑 ∗ (1 + 𝑃)  

𝐴𝑑𝑗 = 𝑁𝑒𝑤𝑚𝑜𝑟𝑡 − 𝑀𝑜𝑟𝑡𝑟,𝑎=𝑗+1,𝑑 
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Eighth, we check that this new adjustment doesn’t break monotonicity in death type H, if 

it doesn’t we apply it as we did for age j, if does break it, we just leave mortality 

unchanged. 

 

Ninth, applying this adjustment is the same as step 5 and 6, but using ages j+1 and j+2 

instead of j and j+1. The only difference here is that when we get to the second to last age 

category (j = 20, 95-99),36 then the compensatory adjustment for deaths is done in the 

first age category of the loop (j=10, 45 to 49), and we restart the process for a second and 

final check of monotonicity. 

 

We have added check limits along the process to avoid mortality going above 1000 per 

1000 and below 0 per 1000 at all times, and if the limits are reached then mortality is left 

unchanged. 

4.3 Elasticity of Child Mortality with Health Spending 

For countries that have a GDP per capita in the initial year of less than $15,000 an 

elasticity factor with health spending (elhlmortspn) of -0.06 will affect mortality of 

children under 5.  That is, each 1 percent change in health spending as a percentage of 

GDP will lower mortality by 0.06 percent; an increase of 100 percent (doubling) would 

produce an automatic reduction of 6 percent in mortality. We have implemented a limit 

on the reductions to be at most 80 percent of mortality. 

 

The GBD project’s distal driver formulation does not take public health spending into 

account.  However, we add a term to the basic GBD distal driver formulation to 

incorporate public health spending as a proximate driver to account for the relatively 

consistent inverse relationship between total public health expenditures and child 

mortality rates in poor countries (Anand and Ravallion 1993; Bidani and Ravallion 1997; 

Jamison et al. 1996; Nixon and Ulmann 2006; Wagstaff 2002). For countries having a 

GDP per capita (at PPP) of $15,000 or less, our model applies a simple elasticity for the 

effects of government health expenditure as a percentage of GDP on all-cause mortality 

(except HIV/AIDS) for the age 0-4 group from the distal driver formulation (the base 

calculation that health expenditures adjust):  

 

 ln ( 𝑞0
𝑎𝑑𝑗

) =5 ln ( 𝑞0
𝑏𝑎𝑠𝑒 ) − 0.06 ∗ 𝐻𝑒𝑎𝑙𝑡ℎ𝐸𝑥𝑝%5  

 

where 05 q is the mortality rate for age 0-4.  

In IFs this formalized version becomes 

𝑀𝑜𝑟𝑡𝐴𝑑𝑗𝑟,𝑗=0−4,𝑑=1,𝑡 = 𝑀𝑜𝑟𝑡𝑟,𝑗=0−4,𝑑=1,𝑡 ∗ (1 + 𝐻𝑙𝐸𝑥𝑝𝐹𝑐𝑡𝑟,𝑡) 

where 

𝐻𝑙𝐸𝑥𝑝𝐹𝑐𝑡𝑟,𝑡 = 𝒆𝒍𝒉𝒍𝒎𝒐𝒓𝒕𝒔𝒑𝒏 ∗
(100 ∗

𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ,𝑡

𝐺𝐷𝑃𝑟,𝑡
) − 𝐺𝐷𝑆𝐻𝐼𝑟,𝑡=1

𝐺𝐷𝑆𝐻𝐼𝑟,𝑡=1
 

                                                 

36 In specialized work looking at low senescent aging the last category is 195-199. 
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where 

𝐺𝐷𝑆𝐻𝐼𝑟,𝑡=1 =
𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ,𝑡=1

𝐺𝐷𝑃𝑟,𝑡=1
∗ 100 

Elhlmortspn = -0.06 

 

where 

 

GDS is government expenditure; elhlmortspn is the elasticity of mortality with health 

spending, j is age category; r is country/region; d is cause (1 is other communicable); t is 

time step. 

 

In this calculation we use health expenditure as a percentage of GDP, rather than health 

expenditure per capita, to avoid any confounding with the distal driver for GDP per 

capita. We established this coefficient for all-cause mortality in the 0-4 age category on 

the basis of multivariate regressions using the GBD distal driver specifications as a base. 
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5. Data Initialization 

Several important differences in our approach to forecasting health relative to that of the 

Global Burden of Disease (GBD) project required development of algorithms for 

computation of initial conditions and small multiplicative adjustments to formulations.  

Specifically, we forecast by country, we begin forecasts in the base year of 2010, and we 

maintain 5-year age categories.  Moreover, we have our own sources of data for GDP per 

capita and education attainment level, which we forecast using our own models.  The 

initial data we obtained from the GBD project provided country, sex, and cause specific 

mortality, but from the year 2008 (subsequently updated to 2010) and in slightly different 

age categories.37  This section details our approach to reconciling differences in initial 

data. 

5.1 Normalization and Scaling Factors 

 

IFs initializes the base year (2010) data using age, sex, cause, and country-specific 

mortality data for 2010 provided by the Global Burden of Disease (GBD), courtesy of 

Colin Mathers at the World Health Organization.  Those data are for infants and then for 

5-year age categories up to 85+.  To fill holes we used the same base rates for 1-4 as for 

infants and for all 5-year age categories above 85, subject to normalization to total 

mortality for the age category.  The model then computes normalization and scaling 

factors which reconcile the results of the forecast regression models with these initial 

data.   

 

The normalization factor helps match the sum of all mortalities in the health module to 

the mortality computed in the population module in the base year (2010).  This process 

assures that we have initial conditions consistent with UNPD mortality data in our base 

year (i.e., the sum of all deaths will be the same as the UNPD mortality data for each 5-

year age and sex category for the year 2010).  The normalization factor uses all types of 

mortality except for AIDS in the numerator and denominator: 

 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑑𝑎𝑡𝑎 − 𝐴𝑖𝑑𝑠 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑑𝑎𝑡𝑎

ΣMortality data𝑖
 

 

 

The scaling factor sets the historic proportions across the different causes of mortality, 

assuring consistency of total deaths forecast using the GBD formulations and our 2010 

values of driving variables with the cause-specific mortality data in the GBD’s detailed 

death file.  The scaling factor uses distal driver regression results for the denominator and 

GBD 2010 data for the numerator: 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑑𝑎𝑡𝑎𝑖

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑖
 

 

                                                 
37 Initial data from the GBD does not separate infants from under 5 mortality and puts together mortality for 

people over 85. 
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These adjustments mean that, except for the total mortality by age and sex of the UN, our 

numbers in the 2010 base year will not match other data precisely, but that the overall 

pattern of deaths by cause should be quite close to the GBD data.38  In the forecasts 

themselves, we keep the multiplicative scaling and normalization parameters constant 

over time because there is no clear reason for changing them in the base, but have added 

parameters to control convergence in scenarios: hlgbdconvdown, hlgbdconvup, 

hlscaleconvdown, where the first parameter controls the normalization factor when is 

greater than 1, the second one controls the normalization factor when is smaller than 1, 

and the last one controls the scaling factor when is greater than 1. 

 

5.2 Cause-specific Mortality: Infants and the Elderly 

The detailed deaths data file (by cause, sex, and age) that we have obtained through the 

generosity of Colin Mathers at the World Health Organization does not include cause-

specific infant or old-age (85+) mortality (greater than 85).  Because IFs forecasts both 

infant mortality and 5-year age categories to 100 years, we incorporate detailed mortality 

data from Sweden (as a proxy, thanks mainly to availability of data)  in order to initialize 

Group II (excluding mental health) cause-specific mortality  for these missing 

populations.39   

 

The first step is to find the weights per age category for Sweden as follows: 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑎=𝑗,𝑑,𝑝 =
𝐷𝑒𝑎𝑡ℎ𝑠𝑟=𝑆𝑤𝑒𝑑𝑒𝑛,𝑎=𝑗,𝑝

𝐷𝑒𝑎𝑡ℎ𝑠𝑟=𝑆𝑤𝑒𝑑𝑒𝑛,𝑎=𝐽𝐽,𝑝
 

 

Where j is the smaller IFs age category a (for example infants), JJ is the bigger 

corresponding GBD age category (for example children < 5, which implies the addition 

of infants plus children 1-4), p is gender, and d is mortality type. 

 

The second step is to check the monotonicity of growth in the existing mortality data for 

each country and type of mortality (from age 45 forward).  If monotonicity is not found  

(i.e., mortality rates do not rise in step with increasing age groups) then the initialization 

data is left unchanged for this country and mortality type combination.  If initial mortality 

does increase monotonically, we further adjust mortality: 

 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑎=𝑗,𝑑,𝑝 = 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝑟,𝑎=𝑗,𝑑,𝑝 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑎=𝑗,𝑑,𝑝 ∗
𝑃𝑜𝑝𝑟,𝑎=𝐽𝐽,𝑝

𝑃𝑜𝑝𝑟,𝑎=𝐽𝐽,𝑝
 

                                                 
38 Complicating initialization further, the UNPD presents its data in 5-year ranges, including 2005-2010 and 

2010-2015.  The age- and sex-specific survivor-table values in those ranges therefore do not correspond to 

specific years like our base of 2010.  After correspondence with Kirill Andreev of the UNPD, which we 

acknowledge appreciatively, we decided to average the mortality values in the two 5-year ranges ending 

and beginning with 2010. 

39 This may be an issue also for Groups 1 and 3, but we have used the procedure with Sweden only for 

Group 2. 
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Where j, JJ, p and d are the same as in the previous equation and Pop is the population 

vector. 

This option has been currently disabled because it was producing too much NCDs 

compared to CDs for countries like Mali for people over 90 years of age.40 

 

 

                                                 
40 Beginning with discovery of a problem for Mali, the use of this distribution procedure in IFs ran into 

some logic problems with poor behavior.  As of September, 2013, the spread of initialization data for 

infants 1-4 and for ages 85+ is disabled.  That spread, although desirable, is not necessary and at this point 

the code generates more problems than it solves.  This section of the documentation is maintained should 

we want to revisit the issue. 
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6. Incorporating Proximate Drivers  

 

Although the distal driver approach serves us well in forecasting health, thinking about 

intervention and leverage points in order to achieve alternate health futures necessarily 

involves the inclusion of proximate health drivers into the model.  Therefore we need to 

have an approach that can layer specific risk analysis onto the underlying distal driver 

specifications.  We need to discuss our general approach to doing that, which uses 

population attributable fraction or PAF formulations, and we need to provide equations of 

the models used to forecast proximate drivers in IFs and to build the relative risk 

estimates we used in the model.41   

6.1 Adjusting mortality due to changes in a single risk factor 

We build our approach on an understanding of two basic concepts used in the 

Comparative Risk Assessment (CRA) project (Ezzati et al. 2004), specifically relative 

risk (RR) and population attributable fraction (PAF). An RR is a “measure of the risk of 

a certain event happening in one group compared to the risk of the same event happening 

in another group”.42  We follow the approach taken by the CRA study, comparing our 

forecast population at risk to an “ideal” population with a “theoretical minimum” level of 

risk. For example, the WHO estimates that children under five who are moderately or 

severely underweight are almost nine times more likely to die of communicable causes 

than a population of “normal-weight” children (Blössner and de Onis 2005). 

 

As its name suggests, a PAF or population attributable fraction reflects the degree to 

which a specific risk factor is associated with the occurrence of a specific health 

outcome. Formally, it is the proportional reduction in disease or death rates for the total 

population (including those with and without the risk factor) that we would expect if we 

reduced a particular risk factor to a theoretically minimum level (Ezzati et al. 2004).  The 

further the current situation is from the ideal, the closer the value of the PAF will be to 1. 

 

A PAF is calculated as: 

 

(∑RR(x)P(x)-∑RR(x)P’(x)/∑RR(x)P(x)) = 1 - ∑RR(x)P’(x)/∑RR(x)P(x)   

 

where 

RR(x) is relative risk at exposure level x; and  

P(x) is the population distribution in terms of exposure level, i.e. the shares of the 

population exposed to each level of exposure; 

P’(x) is the theoretical minimum population distribution in terms of exposure 

level; for certain risks this is defined as no exposure; where this is not 

realistic, the WHO defines an international reference population 

                                                 

41 See Chapters 5 and 6 of Hughes et al (2011) for a detailed discussion around the inclusion of proximate 

drivers into IFs.   

42 Dictionary of Cancer terms, National Cancer Institute; accessed online, January 2010.  

http://www.cancer.gov/dictionary/. 
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Following this definition, multiplying the mortality from a particular disease by the PAF 

yields an estimate of the number of people who would not have died had the risk factor 

been at its theoretical minimum level.  If we assume that the values of RR(x) and P’(x) 

for particular risk factors and diseases do not differ across countries or change over 

time,43 then changes in the PAF are solely a function of changes in P(x), the exposure of 

the population to the particular risk factor. Thus, it is necessary to be able to forecast the 

future levels of the risk factors. Later sections of this chapter describe how this is done 

for specific risk factors such as undernutrition, obesity, smoking, and indoor air pollution.  

 

Since our forecast of health outcomes from distal drivers implicitly suggests certain 

proximate driver levels, we are really interested in the effect of a difference in (1) 

estimates of the future levels of a risk factor based only on distal drivers (representing an 

“expected” value for a country given those distal drivers), and (2) estimates based upon a 

more complete set of drivers (representing our best forecast for a country using initial 

conditions and therefore path dependency, the additional and/or alternative drivers, and 

potential scenario interventions) .  We therefore calculate two versions of the PAF, 

namely PAFDistal and PAFFull. Defining MortalityDistal as the mortality calculated using 

only the distal drivers and MortalityFinal as the mortality after accounting explicitly for the 

risk factor, we can state that: 

 

• MortalityDistal * PAFDistal represents the number of people who would not have 

died had the risk factor been at its theoretical minimum level using the distal 

formulations for mortality and the proximate risk factor; and 

• MortalityFinal * PAFFull represents the number of people who would not have died 

had the risk factor been at its theoretical minimum level using a more complete 

formulation for mortality and the proximate risk factor 

 

If we assume that no other factors influence the difference in total mortality between the 

distal formulation and that using the full model, then: 

 

MortalityFinal - MortalityDistal = MortalityFinal * PAFFull - MortalityDistal * PAFDistal  

 

Yields: 

 

MortalityFinal  = MortalityDistal * ((1-PAFDistal) / (1-PAFFull)) 

  = MortalityDistal * ∑RR(x)PFull(x)/∑RR(x)PDistal(x)    

 

The adjustment factor is the ratio of the weighted average relative risks based on the 

distributions using the distal-only versus the full formulations for estimating the value of 

the risk factor. A higher weighted-average relative risk based on the full formulation 

implies that the distal drivers overestimate our anticipated improvement (or 

                                                 
43 This is very reasonable for P’(x) by its definition. With respect to RR(x), we assume these to be the same 

for all countries unless otherwise specified in the CRA reports. Any change over time is likely to be picked 

up in other parts of our model dealing with changes in technology and the efficiency of health care systems. 
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underestimate the deterioration) in the risk factor. Thus, the mortality forecast needs to be 

adjusted upwards.  Alternatively, if the weighted-average relative risk is lower based on 

the full formulation than on the distal formulation, the mortality forecast will be adjusted 

downwards. Note that this property of the calculation actually obviates the need to know 

the theoretical minimum population. 

 

6.2 Multiple risk factors 

Sometimes more than one risk factor will be linked to a particular disease. In theory, this 

requires estimating joint relative risks and exposure distributions. Under certain 

circumstances, however, a simple method can be used to calculate a combined PAF that 

involves multiple risk factors (Ezzati and others 2004): 

 

PAFcombined = 1 - ∏(1-PAFi)        

 

where 

PAFi is the PAF for risk factor i 

 

The logic here is as follows. 1-PAFi represents the proportion of the disease that is not 

attributable to risk factor i. Multiplying these risks yields the share of the disease that is 

not attributable to any of the risk factors, and subtracting this from 1 leaves the share of 

the disease that is attributable to the set of risk factors considered. 

 

Say that we have 2 risk factors:44 

 

PAFcombined = 1 - (1-PAF1)(1-PAF2) 

 

Following from the discussion above, the combined adjustment factor can be calculated 

as: 

 

((1-PAFcombined
Distal) / (1-PAFcombined

Full)) = [(1-PAF1
Distal)(1-PAF2

Distal)] / [(1-PAF1
Full)(1-

PAF2
Full)] 

 

= [(1-PAF1
Distal)/(1-PAF1

Full)] * [(1-PAF2
Distal)/(1-PAF2

Full)] 

 

= [∑RR1(x)P1
Full(x)/∑RR1(x)P1

Distal(x)] * [∑RR2(x)P2
Full(x)/∑RR2(x)P2

Distal(x)]  

 

In other words, the combined adjustment factor is a simple multiplication of the 

individual adjustment factors. 

 

                                                 
44 In the sequence of our calculations we decompose this equation in practice by finding the individual 

PAFs, computing their individual independent effects with (1-PAFDistal)/(1-PAFFull), and multiplying 

mortality independently and cumulatively.   
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6.3 Specific Risk Factors 

For each of the proximate risk factors used in the IFs model, we develop “full” model 

formulations (our best forecasts using IFs variables) and “distal” models (using just 

income and education) in order to compute the two PAFs described above.  The IFs 

system includes full formulations and proximate risk analysis for selected risk 

categories: childhood undernutrition, child sever acute malnutrition (SAM), adult body 

mass index and related obesity, unsafe water and sanitation, indoor air pollution 

associated with solid fuel use, outdoor urban air pollution, and smoking. 

 

6.3.1 Childhood Undernutrition 

The population level of childhood undernutrition impacts IFs forecasts of under-5 

mortality related to communicable causes.  The “full” IFs forecast is based on 

estimated calories per capita45 and access to safe water/sanitation: 

𝑧 = 1.9212672 − 0.00069 ∗ 𝐶𝐿𝑃𝐶𝑟 − 0.011589

∗ (𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑟,𝑠𝑠=2 + 𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑟,𝑠𝑠=3) − 0.020278

∗ (𝑆𝐴𝑁𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑟,𝑠𝑠=2 + 𝑆𝐴𝑁𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑟,𝑠𝑠=3) 

 

𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑟 = 100 ∗
𝑒𝑧

1 + 𝑒𝑧
 

 

Where: 
 

CLPC is calories per capita 
WATSAFE(R, 2) is improved access to water 

WATSAFE(R, 3) is piped access to water 

SANITATION(R, 2) is shared access to sanitation 

SANITATION(R, 3) is improved access to sanitation 

MALNCHP is percent of children malnourished. 

 

For each country/region r 

 
  Parameters for the distal regression were estimated in a mixed model regression 

analysis (using Proc Mixed in SAS Version 9.1) from historical data (1960-2005): 

 

𝑧 = −0.714297 − 0.58979 ∗ 𝐿𝑁(𝐺𝐷𝑃𝑃𝐶𝑃𝑟) − 0.544938 ∗ 𝐿𝑁(𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟) 

7 
z

z

e

e
PMN




1
*100

 
8  

                                                 
45 Calories per capita are calculated through the agricultural module in IFs.  The number 

of available calories depends strongly on the interaction of two factors: income (including 

its distribution) and food price.  Long-term trends in caloric availability reflect fairly 

rapidly-rising incomes in most parts of the world.   
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In the above equation GDPPCP is GDP per capita at purchasing power parity and 

EDYRSAG25 is average years of formal education for adults over 25.  PMN is the 

percentage of children categorized as “moderately” or “severely” undernourished 

(<=-2 standard deviations below the international standard of weight for age).  Both 

the distal and full models incorporate an additive shift factor to match initial year 

(2010) model estimates to historical data.  This additive shift factor converges to 0 in 

100 years. 

 

Assuming a normal distribution, we further categorize the under-5 population into 

four categories: severe (<-3 standard deviations below normal weight for age); 

moderate (-3 <= -2 standard deviations below normal weight for age); mild (-2 <= -1 

standard deviations below normal weight for age); and baseline (>-1 standard 

deviations below normal weight for age).  With the addition of sever acute 

malnutrition (SAM) and its treatment to the model, we have also included a 

mechanism by which successfully treated cases of SAM are taken out of the severe 

distribution of malnutrition and removed entirely from MALNCHP. The relative risks 

of mortality related to communicable disease category (compared to a baseline risk of 

1) are listed in Table 346. 

 

Table 3 – Relative Risks Related to Childhood Undernutrition (existing) 

 

Cause Mild Moderate Severe 

Other Group I 2.06 4.24 8.72 

Diarrheal Disease 2.32 5.39 12.5 

Malaria 2.12 4.48 9.49 

Respiratory 
Infection 

2.01 4.03 8.09 

 

Olofin et al, 2013, Weight-for-Age 

Cause Mild Moderate Severe 

Other Group I 1.54 1.58 8.28 

Diarrheal Disease 1.73 2.86 11.56 

Malaria 1.26 1.65 1.29 

Respiratory 
Infection 

1.85 3.11 10.10 

 

 

                                                 
46 Relative risk estimates from Gakidou et al. 2007, Table 3: 1880.   
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6.3.2 Childhood Severe Acute Malnutrition 

The population level of childhood SAM impacts IFs forecasts of under-5 mortality 

related to communicable causes.  The “full” IFs forecast is based on estimated 

average levels of education, a proxy for female empowerment, violent domestic 

conflict, and governance transparency (see Table X).  

 

Driver Justification Data Information 

Education 

 

 

Linked to the quality of maternal health and infant 
feeding practices, which impacts nutrient intake 
(Ebenebe, 2012). 

Average years of schooling for males 
and females aged 25 years or older 
(Barro & Lee, 2010). 

Conflict 

 

Conflict environments reduce available food supply 
by destroying arable land, displacing populations, 
and reducing social and physical infrastructure 
(FAO, 1995). 

Political Instability Task Force 
dataset (2013). 

Corruption Corruption reduces the ability of governments and 
states to implement resources that combat 
malnutrition (Ngozi-Uchendu & Olatunbosun, 

2015). 

Corruption Perception Index from 
Transparency International (2012). 

 

 

Coefficients for the full SAM equation were estimated using non-linear regression 

model (nl in STATA version 13) of a sigmoidal form on a pooled panel data set 

(years 2000 to 2015): 

 

𝑧 =  −2.455 − 0.103 ∗ 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟,𝑠𝑠=3 −  0.306 ∗ 𝐺𝑂𝑉𝐶𝑂𝑅𝑅𝑈𝑃𝑇𝑟 + 0.114
∗ 𝑆𝐹𝐼𝑁𝑇𝐿𝑊𝐴𝑅𝑀𝐴𝐺𝑟  

 

𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝑟 = 100 ∗
𝑒𝑧

1 + 𝑒𝑧
 

 

Where: 

EDYRSAG25(R,3) is average years of education for adults over the age of 25 (male 

and female),  GOVCORRUPT(R) is an index of government corruption (higher is 

less corrupt) based on the Corruption Perception index from Transparency 

International, and SFINTLWARMAG(R) is the forecast magnitude of conflict 

within a country for each country/region r. 

 

This equation is used both in forecasts of MALNCHPSAM, and also to fill missing 

data. For the latter process, there is an additional step of setting any countries 

without data that have unimproved sanitation less than 0.5 percent to a seed value of 

0.01. Similarly, coefficients for the distal SAM equation were estimated using non-

linear regression model (nl in STATA version 13) of a sigmoidal form on a pooled 

panel data set (years 2000 to 2015): 
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𝑧 = −2.821 − 0.118 ∗ 𝐿𝑁(𝐺𝐷𝑃𝑃𝐶𝑃𝑟) − 0.45 ∗ 𝐿𝑁(𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟,3) 

z

z

e

e
PMN




1
*100

 
 

In the above equation GDPPCP is GDP per capita at purchasing power parity and 

EDYRSAG25 is average years of formal education for adults over 25.  PMN is the 

percentage of children categorized as severe acute malnourished (<=-3 standard 

deviations below the international standard of weight for height).  Both the distal 

and full models incorporate an additive shift factor to match initial year model 

estimates to historical data.  This additive shift factor converges to 0 in 100 years. 

 

Further development of the health sub-module is likely to build a distributional 

formulation of underweight by height, categorizing the under-5 population into four 

categories: severe (<-3 standard deviations below normal weight for height); 

moderate (-3 <= -2 standard deviations below normal weight for age); mild (-2 <= -1 

standard deviations below normal weight for height); and baseline (>-1 standard 

deviations below normal weight for age).  Currently, however, the model only 

supports the fourth distribution, which by default is not active. Using the switch 

parameter, samrrsw, users can substitute the severe distribution, and associated RR 

values, for MALNCHP with those from MALNCHPSAM. If the switch is not 
activated, then the identified relative risks of weight-for-age drive 
mortality/morbidity at every distribution below the mean. When the switch is 
activated, identified relative risks for weight-for-height (i.e. SAM) drive 
mortality/morbidity for the lowest distribution of undernourished children (<-3z 
scores). 
The relative risks of mortality related to communicable disease category (compared 

to a baseline risk of 1) are listed in Table 347.  

 

 

Cause MALNCHPSAM Min Max 

Other Group I 11.21 5.91 21.27 

Diarrheal Disease 12.33 9.18 16.57 

Malaria 1.24 0.17 9.29 

Respiratory 
Infection 

9.68 6.07 15.43 

 

  

                                                 
47 Relative risk estimates from Olofin et al. 2013, Table 5: 247.   
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Unlike child undernutrition (MALNCHP), SAM is an acute condition, and the core 
measure (MALNCHPSAM) represents a point estimate rather than an annual sum of 
those affected. Affected children may recover due to treatment (official or 
otherwise) or die within a year. Therefore, to understand the total annual burden 
of SAM and the upper limit on SAM admissions, it is necessary to estimate 
incidence, or the new cases of SAM over a given period of time (typically one year). 
In IFs this measure (MALNCHPSAMINC) is represented as the total annual number 
of new SAM cases as a percent of children under the age of 5. 
 
In practice, incidence is often estimated from prevalence data using an incidence 
correction factor, most commonly given as 1.6. This factor is calculated according 
to the following logic: 
 

Incidence Correction (K) =  
𝑡

(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑠𝑒𝑎𝑠𝑒)
=   

12

7.5
= 1.6 

 

7.5 months is a commonly accepted estimate for the average duration of SAM based 

on studies conducted on SAM populations in the DRC and Malawi (Garenne et al, 

2009). Therefore, over a time period (t) of one year (i.e. 12 months), this yields: 
 
While the relationships, or parameterization, of time period and duration do not 
exist in the model, users can adjust the incidence correction factor using the 
parameter malnchpsamadj (initialized to 1.6). Incidence and prevalence are 
mathematically related such that incidence can be estimated with data on 
prevalence and the incidence correction factor (K). Specifically: 
 
Incidence = Prevalence * K 
 
As SAM admissions happen continuously throughout the year, and successful 
treatment does not prevent children from becoming SAM again, cured cases should 
be estimated in the calculation of incidence. Since IFs’ forecast of incidence is 
designed to capture all known and potential cases of SAM within a one-year time 
period, we extend the above formulation to include not just prevalence and the 
incidence correction factor, but also the number of successfully treated cases of 
SAM. The model captures incidence according to the following logic: 
 
Incidence = Pre-Averted Prevalence * 1.6,  
 
Where 1.6 represents the incidence correction factor, and Pre-Averted Prevalence 
represents an endogenous calculation in the model of prevalent cases of SAM 
absent treatment in a given year. In the model this is operationalized as:48 

                                                 
48 A maximum value of 5 has been exogenously imposed on the ratio between pre-averted incidence and 

post-averted prevalence, meaning that total incident cases can only exceed prevalence estimates by a factor 

of five for any given forecast year in the model.  
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𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝐼𝑁𝐶𝑟 =  
𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝑟 ∗  𝑚𝑎𝑙𝑛𝑐ℎ𝑝𝑠𝑎𝑚𝑎𝑑𝑗

1 − (
𝑆𝐴𝑀𝐴𝐷𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑟

100 ∗
𝑆𝐴𝑀𝐴𝑉𝐸𝑅𝑇𝐸𝐷𝑟

100 )
 

 

The variable for SAM admissions (SAMADMISSION) is initialized using data on 

the total national number of admissions provided by ACF and its partners. 

SAMADMISSION is first calculated as a percent of total incident cases, and 

forecasted as a function of GDP per capita at purchasing power parity (whereby 

higher admissions rates are driven by increasing GDP per capita).49 For OECD 

countries with no data on admissions the model assumes that all cases of SAM are 

treated. For all other countries, initial admissions are set to 100. A multiplicative 

parameter (samadmissionm) and an additive parameter (samadmissionadd) can be 

used to change SAM in scenario analysis. We have also included a switch parameter 

(samadmissionsw) that allows users to forecast admissions in three different ways: 

(0) forecasts all countries according to the relationship with GDPPCP, (1) holds all 

initial zero values constant over time (default value), and (2) holds all initial values 

constant.50  

Success of treatment as a percent of all admission (SAMAVERTED) is initialized 

from the same data source, and assumed to be 67 percent (the global average) for 

any country with missing data. A multiplicative parameter (samavertedm) can be 

used to change SAM in scenario analysis. The model also assumes the success rate 

to converge to 100 percent over a 100-year time horizon, with a parameter 

(samavertedconvyr) that allows users to change the years to converge to 100. 

To calculate the final annual value of MALNCHPSAM, we use the following 

equation:  

                                                 

49 This relationship can be found in the model as the bivariate function “GDP/Capita (PPP 2011) Versus 

SAM Admissions (Linear). Before fitting the regression line, all missing data for OECD countries were set 

to 100.  

50 In addition to parameters that directly affect forecast of admissions, we have included a parameter for the 

unit cost of treatment (samadmissioncost),50 which allows us to find the total cost of treatment over the 

year as: 

𝑆𝐴𝑀𝐴𝐷𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑇𝑂𝑇𝐶𝑂𝑆𝑇𝑟

=  𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝑟 ∗ 𝑚𝑎𝑙𝑛𝑐ℎ𝑝𝑠𝑎𝑚𝑎𝑑𝑗/(1 −
𝑆𝐴𝑀𝐴𝐷𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑟

100
∗

𝑆𝐴𝑀𝐴𝑉𝐸𝑅𝑇𝐸𝐷𝑟

100
)

∗ 𝑆𝐴𝑀𝐴𝐷𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑟 ∗
𝑃𝑂𝑃0𝑇𝑂5𝑟

1000
∗ 𝑠𝑎𝑚𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑟  
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𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝑟

= (1 −
𝑆𝐴𝑀𝐴𝐷𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑟

100
∗

𝑆𝐴𝑀𝐴𝑉𝐸𝑅𝑇𝐸𝐷𝑟

100
)

∗  
𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝑟

1 −
𝑆𝐴𝑀𝐴𝐷𝑀𝐼𝑆𝑆𝐼𝑂𝑁𝑟 − 𝐷𝑖𝑓𝑓𝐴𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛

100 ∗
𝑆𝐴𝑀𝐴𝑉𝐸𝑅𝑇𝐸𝐷𝑟 − 𝐷𝑖𝑓𝑓𝐴𝑣𝑒𝑟𝑡𝑒𝑑

100  
 

Where DiffAdmission is the difference in admission rates between the an unmodified 

SAMADMISSION value and SAMADMISSION after the additive and 

multiplicative parameters have been applied, and DiffAverted is the difference in 

averted rates between the an unmodified SAMAVERTED value and 

SAMAVERTED after the multiplicative parameter has been applied. 

By default, it is assumed that all successfully averted SAM cases are rehabilitated to 

normal weight for age. Changing the parameter samtomalnchpsw allows users to 

specify scenarios in which successful treatment does not result in full weight (for 

age) rehabilitation, with a value of 1 resulting in all averted SAM cases remaining 

malnourished (by default this parameter is set to 0). The diagram below describes 

how this process connects to the broader economic model through stunting and on to 

human capital productivity (MFPHC). In addition, it shows a pathway directly from 

SAM to stunting. This is discussed in greater detail in section 8.3. 

Explicit SAM prevalence 

rate 

(from model formulation)

MALNCHPSAM

SAM averted as a percent 

of SAM

SAMAVERTED

SAM effect on stunting

malnchpsamtostunt

Aversion’s effect on child 

undernutrition

samtomalnchpsw

Stunting

HLSTUNT

Child undernutrition

MALNCHP

+

+

+

-

Human Capital 

Productivity

MFPHC

-
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6.3.3 Adult Body Mass Index (BMI) and Obesity 

Population levels of BMI (HLBMI) impact IFs forecasts of adult (over 30 years) 

mortality related to cardiovascular disease and diabetes.  Both the distal driver and full 

model formulations are initialized using a multiplicative shift factor to match historic 

data; these shift factors are kept constant over time.  Given the lack of historical data, all 

regressions were created using 2005 estimates.    

 

Full model formulations for females and males, respectively, use calories per capita 

(CLPC) as the driver. The parameter hlbmim can be used to modify the result: 

 

𝐻𝐿𝐵𝑀𝐼𝑟,𝑝=2 = (18.73 + 0.00265 ∗ 𝐶𝐿𝑃𝐶𝑟) ∗ 𝒉𝒍𝒃𝒎𝒊𝒎𝑟,𝑝=2 

𝐻𝐿𝐵𝑀𝐼𝑟,𝑝=1 = (16.54 + 0.00305 ∗ 𝐶𝐿𝑃𝐶𝑟) ∗ 𝒉𝒍𝒃𝒎𝒊𝒎𝑟,𝑝=1 

 

Distal driver formulations are based on GDP per capita at PPP (GDPPCP) and years of 

formal education for adults 25 and older (EDYRSAG25): 

 

𝐻𝐿𝐵𝑀𝐼𝑟,𝑝=2 = 22.7 + 0.46 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 +  1.36 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 

𝐻𝐿𝐵𝑀𝐼𝑟,𝑝=1 = 21.3 + 0.95 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 +  1.17 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 

 

In order to use the PAF methodology, we assume a normal distribution of BMI around 

the mean with a standard deviation of 10% of the mean.  BMI has a normal distribution 

where we forecast the mean, and assume a standard deviation of 10% of the mean.  

 

Section 3.2.1 describes the use of BMI in forecasting diabetes-related mortality.  For 

cardiovascular disease, the relative risk of mortality increases with every unit of BMI.  

The calculation of relative risk uses a continuous formulation based on BMI level: 

 

𝑅𝑅(𝐻𝐿𝐵𝑀𝐼𝑟) = 𝐶𝑂𝑁𝑆𝑇𝐴𝑁𝑇𝐻𝐿𝐵𝑀𝐼𝑟−21 

 

The constant (CONSTANT) depends on age category: 1.14 for 30-44 year olds, 1.09 for 

45-59 year olds, 1.09 for 60-69 year olds, and 1.05 for 70-79 year olds.51 

From BMI it is possible also to compute the portion of a population that is obese 

(HLOBESITY).  The model does that as a function of HLBMI by using separate table 

functions for females (BMI Versus Female Obesity % (CRA) Quad) and males (BMI 

Versus Male) Obesity % (CRA) Quad).  The parameter hlobesitym can be used for 

modification in scenario analysis. 

6.3.4 Water and Sanitation 

Forecasts of mortality related to diarrheal disease (all ages) depend on access to safe 

water and improved sanitation.  The regression models for each were estimated using the 

most recent year of data. 

                                                 
51 Estimates derived from Kelly et al. 2009.   
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Full model formulations: 

 

𝑆𝐴𝑁𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑟,𝑠𝑠=𝑜𝑡ℎ𝑒𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

= 0.3809 − 0.0579 ∗
𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ

𝐺𝐷𝑃𝑟
∗ 100 − 0.3309

∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.7968 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 + 0.0233 ∗
𝐼𝑁𝐶𝑂𝑀𝐸𝐿𝑇1𝐶𝑆𝑟

𝑃𝑂𝑃𝑟

∗ 100 

 

𝑆𝐴𝑁𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑟,𝑠𝑠=𝑠ℎ𝑎𝑟𝑒𝑑

= −1.7235 − 0.0298 ∗
𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ

𝐺𝐷𝑃𝑟
∗ 100 − 0.7834

∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 + 0.2591 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 + 0.0195 ∗
𝐼𝑁𝐶𝑂𝑀𝐸𝐿𝑇1𝐶𝑆𝑟

𝑃𝑂𝑃𝑟

∗ 100 

 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑟,𝑠𝑠=𝑢𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

= −0.936 + 0.02 ∗ 𝑃𝑂𝑃𝑅𝑈𝑅𝐴𝐿𝑟 − 0.0891 ∗
𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ

𝐺𝐷𝑃𝑟
∗ 100

− 0.8896

∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.2384 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 + 0.0254 ∗
𝐼𝑁𝐶𝑂𝑀𝐸𝐿𝑇1𝐶𝑆𝑟

𝑃𝑂𝑃𝑟

∗ 100 

 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑟,𝑠𝑠=𝑜𝑡ℎ𝑒𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

= −1.0409 + 0.0293 ∗ 𝑃𝑂𝑃𝑅𝑈𝑅𝐴𝐿𝑟 − 0.1129 ∗
𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ

𝐺𝐷𝑃𝑟
∗ 100

− 0.7521

∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 + 0.082 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 + 0.018 ∗
𝐼𝑁𝐶𝑂𝑀𝐸𝐿𝑇1𝐶𝑆𝑟

𝑃𝑂𝑃𝑟

∗ 100 

 

Distal Driver formulation: 

 

𝑆𝐴𝑁𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑟,𝑠𝑠=𝑜𝑡ℎ𝑒𝑟 𝑢𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

= 0.9875 − 0.8841 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.6483 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟  

𝑆𝐴𝑁𝐼𝑇𝐴𝑇𝐼𝑂𝑁𝑟,𝑠𝑠=𝑠ℎ𝑎𝑟𝑒𝑑

= −1.1191 − 0.9798 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.1388 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑟,𝑠𝑠=𝑢𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

= 1.4998 − 1.4532 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.5593 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟  

 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑟,𝑠𝑠=𝑜𝑡ℎ𝑒𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑

= 1.6681 − 1.3199 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.2643 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟  
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INCOMELT1CS/POP∗ 100 is the percentage of people living with less than $1.25 per day 

𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ is health expenditures as a percentage of GDP 

POPRURAL is the percentage of the total population living in rural areas 

 

We use a logit formulation to manage the saturation of the 3 levels of access to either of 

these 2 services, so that the sum of the 3 levels never goes above 100 percent. In this logit 

formulation52 we compute the percentages using the regressions presented, then compute 

the final results following this method: 

 

𝑆1 = 𝑒(𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑠𝑠=𝑢𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑) 

 

𝑆2 = 𝑒(𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑠𝑠=𝑜𝑡ℎ 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑) 

 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑠𝑠=𝑢𝑛𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 =
𝑆1

𝑆1 + 𝑆2 + 1
∗ 100 

 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑠𝑠=𝑜𝑡ℎ𝑒𝑟 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 =
𝑆2

𝑆1 + 𝑆2 + 1
∗ 100 

𝑊𝐴𝑇𝑆𝐴𝐹𝐸𝑠𝑠=𝑝𝑖𝑝𝑒𝑑 =
1

𝑆1 + 𝑆2 + 1
∗ 100 

 

Where UnimpSWat% is the percentage of people with access to unimproved safe water, 

OthImpSWat% is the percentage of people with other improved access to safe water and 

PipedSWat% is the percentage of people with access to piped safe water. The same 

method is applied for estimating access to improved sanitation. 

 

In order to compute the appropriate PAFs, IFs calculates the proportion of the population 

that falls into each of the following five categories:  

 

• Category II: minimum of (share of population with piped connection for water 

supply, share of population with improved connection for sanitation) 

• Category IV: minimum of (share with other improved or piped water supply not 

in category Vb or II, share with basic or improved sanitation not in category Va or 

II) 

• Category Va: minimum of (share with basic or improved sanitation, remainder of 

those without other improved or piped connection for water supply that are not 

already in category VI) 

                                                 
52 For more detail on this formulation please refer to Rothman, Dale. 2009 (Feb). “Formulae for Predicting 

Shares 23 Feb 2009.doc”, unpublished internal Pardee Center working note. 
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• Category Vb: minimum of (share with other improved or piped water supply, 

remainder of those without shared or improved access for sanitation that are not 

already in category VI) 

• Category VI: minimum of (share without other improved or piped connection for 

water supply, share without shared or improved connection for sanitation) 

 

Each category has a different Relative Risk associated with it: 

Category II: 2.5 

Category IV: 6.9 

Category Va: 6.9 

Category Vb: 8.7 

Category VI: 11 

 

The theoretical minimum or international reference is assumed to be 1, and thus the  

PAF equation gets simplified to: 

 




)(*)(

1
1

xPxRR
PAF  

 

6.3.5 Indoor Air Pollution 

Indoor air pollution affects forecasts of under-5 mortality related to respiratory infection 

and adult (30+) mortality related to respiratory disease.  IFs uses the percentage of people 

using solid fuels as their primary source of energy (ENSOLFUEL) as a proxy for indoor 

air pollution. 

 

The full model calculation is: 

 

𝐸𝑁𝑆𝑂𝐿𝐹𝑈𝐸𝐿 𝑟,𝑡 =  
100

1 + 𝑒−(2.823 + 0.166 ∗ 𝐺𝐷𝑃𝑃𝐶𝑃 𝑟,𝑡+ 0.032 ∗ 𝐼𝑁𝐹𝑅𝐴𝐸𝐿𝐸𝐶𝐴𝐶𝐶(𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙)𝑟,𝑡) 

 

ENSOLFUEL = ratio of electricity use to total primary energy demand, in percentage 

GDPPCP = gross domestic product per capita at purchasing power parity in thousand 

constant 2005 dollars 

INFRAELECACC(national, that is, not urban or rural but total) = percent of total 

population with access to electricity in percentage 

• multiplicative shift factor: ENSOLFUELShift; never converges  

• multiplier: ensolfuelm 

• targeting parameters: ensolfuelsetar, ensolfueltrgtyr, ensolfuelsetar, 

ensolfuelseyrtar 

• hold switch: ensolflhldsw, fixes value of ENSOLFUEL at initial year value 

• cross-sectional data, GLM regression, R-squared = 0.81 
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The distal driver formulation for ENSOLFUEL uses the following formula, which relies 

also on EDYRSAG25 and average years of formal education for adults over 25 

 

𝑧 = 2.9538 − 1.0694 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 + 1.0668 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 

𝐸𝑁𝑆𝑂𝐿𝐹𝑈𝐸𝐿𝑟 = 100 ∗
𝑒𝑧

1 + 𝑒𝑧
 

 

We use a multiplicative shift factor to match initialization data in the first year, and keep 

it constant in our forecast. Following work done through the WHO (Desai et al. 2004; 

Smith et al. 2004), IFs adjusts in the full formulation (not the distal one) the percentage of 

population exposed to indoor smoke from solid fuels by a ventilation coefficient 

(ensfvent) that ranges from 0 to 1. A coefficient of 0 indicates no exposure to pollutants 

from solid fuel use, whereas a coefficient of 1 indicates full exposure: 

 

Table 4 - Recommended Ventilation Coefficients to use in Conjunction with 
Percentage of Population Exposed to Indoor Smoke from Solid Fuels 

Country Ventilation Coefficient 

Albania, Belarus, Bosnia & Herzegovina, 

Bulgaria, Croatia, Czech Republic, 

Estonia, Hungary, Latvia, Lithuania, 

Macedonia, Moldova, Poland, Romania, 

Russia, Slovakia, Slovenia, Ukraine, 

Yugoslavia (Serbia and Montenegro) 

0.20 

China 0.25 for children; 0.50 for adults 

All Others 1.0 

•  From Desai and others (2004). 

 

Since in the case of indoor air pollution there are only 2 categories–exposed or not 

exposed, in which case RR = 1 - the mortality effect can then be simplified to: 

 

 

  11

11






distal

full

PRR

PRR
ME  

 

Where P is the percentage of population exposed to indoor smoke from solid fuel, 

adjusted for ventilation; and RR is the relative risk for the exposed population53.  Table 5 

lists RRs used in IFs.   

 

Table 5 - Relative risk estimates for Mortality from Indoor Smoke from Solid Fuels 

Health Outcome Groups Impacted Relative Risk 

Respiratory Infections Children under 5 2.30 (1.90, 2.70) 

Respiratory Diseases 
Females over 30 3.20 (2.30, 4.80) 

Males over 30 1.80 (1.00, 3.20) 

                                                 
53 More information is available on Dale’s documents: “Incorporating Indoor Air Pollution 9 October 

2009.docx”, unpublished internal Pardee Center working note. 
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• From Desai and others (2004) 

• 95% confidence intervals in parentheses 

 

6.3.6 Outdoor Air Pollution 

IFs uses PM 2.5 concentration in urban areas (ENVPM2PT5) as a proxy for outdoor air 

pollution. Outdoor air pollution impacts mortality related to respiratory infections, 

respiratory disease, and cardiovascular disease for adults 30 or older. 

 

The distal driver formulation for ENVPM2PT5 uses the following formula: 

 

𝐸𝑁𝑉𝑃𝑀10𝐸𝑋𝑃𝑟

= 4.8929 + 0.2145 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.0995 ∗ (ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟)2 − 0.451
∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 − 0.0181 ∗ (𝑌𝑒𝑎𝑟 − 1989) 

 

In the above equation GDPPCP is GDP per capita at purchasing power parity and 

EDYRSAG25 is average years of formal education for adults over 25 

 

The full driver formulation for ENVPM2PT5 uses the following formula: 

 

𝐸𝑁𝑉𝑃𝑀10𝐸𝑋𝑃𝑟

= 5.1238 + 0.2533 ∗ ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.056957 ∗ (ln 𝐺𝐷𝑃𝑃𝐶𝑃𝑟)2

− 0.4758 ∗ ln 𝐸𝐷𝑌𝑅𝑆𝐴𝐺25𝑟 − 0.0137 ∗ (𝑌𝑒𝑎𝑟 − 1989) − 0.14

∗
𝐺𝐷𝑆𝑟,𝑔=ℎ𝑒𝑎𝑙𝑡ℎ

𝐺𝐷𝑃𝑟
∗ 100 

 

𝐸𝑁𝑉𝑃𝑀10𝑟 = 𝑒𝐸𝑁𝑉𝑃𝑀10𝐸𝑋𝑃𝑟 

 

𝐸𝑁𝑉𝑃𝑀2𝑃𝑇5𝑟 = 𝐸𝑁𝑉𝑃𝑀10𝑟 ∗ 𝐸𝑁𝑉𝑃𝑀2𝑃𝑇5𝐶𝑜𝑛𝑣𝐹𝑐𝑡𝑟 

 

T is time expressed as the current year 

GDSHealth%GDP is the government expenditures in health as a percentage of GDP 

 

The first formula returns PM10 concentration levels which then are converted to PM2.5 

using a conversion factor. The WHO (Ostro 2004 and EBD spreadsheet) recommends the 

following conversion factors: 

 

• 0.5 - developing countries outside of Europe 

• 0.65 - developed countries outside of Europe 

• 0.73  - European countries 

 

In the case of outdoor air pollution we can assume that all persons in urban areas are 

exposed to the same level of air pollution and therefore the same relative risk. Therefore 

we can simplify the mortality effect as follows: 
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where the recommended value for β is 0.1161.54 

6.3.7 Smoking Rate and Smoking Impact 

The ultimate purpose of forecasting smoking (HLSMOKING) by country/region r and 

sex p is to forecast smoking impact (HLSMOKINGIMP) by country/region, age category 

a, and sex p.  We provide some background on the general approach surrounding 

smoking impact and the some specific elements of its implementation in IFs (some of the 

background comes directly from Hughes et al. 2011: 41-42). 

 

In 1992 Peto et al. proposed a method for calculating the proportion of deaths caused by 

smoking that was not dependent on statistics on prevalence of tobacco consumption.  

This method involved developing an indicator for accumulated smoking risk termed the 

smoking impact ratio (SIR). Ezzatti and Lopez (2004: 888) defined the SIR as 

“population lung cancer mortality in excess of never-smokers, relative to excess lung 

cancer mortality for a known reference group of smokers.” In other words, the ratio is 

derived by comparing actual population lung cancer mortality with the expected lung 

cancer mortality in a reference population of nonsmokers. Because the SIR is derived 

from age-sex lung cancer mortality it can also provide an indication of the “maturity” of 

the smoking epidemic (the extent to which the population had been exposed to tobacco in 

the past (Ezzati and Lopez 2004: 888). Once the SIR has been determined, one can then 

use it to estimate the proportions of deaths from other diseases attributable to smoking 

(Peto et al. 1992).  

 

For the GBD project, Mathers and Loncar developed country-level smoking impact (SI) 

projections to 2030 (Mathers and Loncar 2006; and Mathers and Loncar, Protocol S1 

Technical Appendix, n.d.) and used them as part of their distal-driver formulation.  The 

SI projections rely upon expert judgment, and it was not possible for the IFs project to 

improve on them; thus we used those projections without change.  

 

Forecasting beyond 2030 required, however, that the IFs project extend those series, 

taking into account a long lag between smoking rates and smoking impact. We therefore 

wanted smoking rates themselves to drive our approach. The development of a structural 

forecast system for those rates involved several main steps. First, we created a historical 

series of estimated smoking rates. Second, we constructed cross-sectional relationships 

that suggest expected rates of smoking based on GDP per capita at PPP for males and 

females separately. Third, we initialized a moving average rate of change in smoking rate 

with the compound rate of change between 1995 and 2005 and used that as the basis for 

forecasting longer-term. Finally, for forecasting smoking impact longer term we used the 

                                                 
54 More Information on: Rothman,  Dale. 2009 (Feb). “Incorporating Outdoor air pollution 5 October 

2009.docx” 
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same process in reverse that we had earlier used to estimate the historical smoking series, 

that is, we calculated smoking impact from smoking rate using a 25-year lag. 

 

In more recent work (beyond that supporting the Hughes et al. 2011 volume, we have 

introduced an alternative approach to forecasting change in smoking rate over time, one 

that uses a structural (and heavily algorithmic) smoking stages model.  In the sections 

below we discuss the four steps of the original model and then the revised approach to 

forecasting smoking rates (work in progress). 

6.3.6.1  Historical Smoking Rates 

We found it necessary to compute historical smoking rates because we found historical 

smoking rate data (taken from WHO) to be exceptionally sparse, and we needed to 

understand the patterns and trajectory of smoking behavior over time as a subsequent 

basis for forecasting. We may revisit this in the future because we now have data from 

the WDI for 1977 and more recent years. 

 

We built the historical imputed smoking series on the most recent smoking rate data point 

of each country and the smoking impact forecasts of the Global Burden of Disease 

(GBD). Those GBD forecasts of smoking impact cover the period from 2005 through 

2030, provide considerable country coverage, and represent age in four quite large 

categories: 30-44, 45-59, 60-69, and 70 and older. These can be found in our tables 

SeriesHealthSmokingImpactMales30to44, SeriesHealthSmokingImpactMales45to59, 

SeriesHealthSmokingImpactMales60to69, SeriesHealthSmokingImpactMales70to100 in 

IFsHistSeries.mdb (and the same four tables for females). 

 

Assuming a direct 25-year lag between smoking rate and smoking impact, we used year-

to-year percentage changes in the smoking impact series to change smoking rates before 

and after our smoking data point. In spite of the simplicity of this approach, and the fact 

that smoking impact reflects more than smoking rates, we found that the constructed 

series tended to match relatively well when more than one historical point for smoking 

rate existed. 

 

This is done in a procedure invoked under the IFs menu option Extended Features called 

Generate Historical Smoking Rate Estimates. The procedure starts by estimating historic 

smoking rates by age category (4 categories corresponding to the 4 smoking impact age 

categories of the GBD forecasts) and sex assuming a lag of 25 years (that is, filling in the 

historical smoking series from BaseYear – 25 to Base Year using GBD smoking impact 

data from Base Year to Base Year + 25).  Then an all-age estimate for smoking rate is 

found with a simple average across the 4 smoking impact age categories. Next we 

compute an additive shift factor for each country to match the most recent WHO smoking 

rate data (from SeriesHealthSmokingPrevalenceWHOFemales% and the same table for 

males), and then we apply the same shift factor to smoking rate data for previous years. 

In cases where there are no smoking rate data we compute aggregated shifts using WHO 

Regions and apply the regional shift to the member country(ies) with no data.  The final 

result of this process are 25 year-long series on smoking rates in the tables 

SeriesHealthSmokingMales%SI and SeriesHealthSmokingFemales%SI in 

IFsHistSeries.mdb. 
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6.3.6.2  Smoking as a Function of GDP per Capita 

Once we have an historical rate of smoking, the next step is forecasting it so as to drive 

forecasts of smoking impact beyond the 2030 of the GBD estimates.  Forecasting 

smoking in IFs is actually a two-step process beginning with the construction of   

cross-sectional relationships for expected rates of smoking for males and females 

separately, based on GDP per capita at PPP.   

 

Female smoking rate cross-sectional relationship: 

 

𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒𝑟,𝑝,𝑡 = 5.6634 + 0.6893 ∗ 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.00573 ∗ 𝐺𝐷𝑃𝑃𝐶𝑃𝑟
2 

 

Male smoking rate cross-sectional relationship: 

 

𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒𝑟,𝑝,𝑡 = 38.3996 + 0.3386 ∗ 𝐺𝐷𝑃𝑃𝐶𝑃𝑟 − 0.00224 ∗ 𝐺𝐷𝑃𝑃𝐶𝑃𝑟
2 

 

Where Smok_Rate by country/region r, sex p, and year t is an initial estimate of smoking 

rate (percent), and GDPPCP is GDP per capita at PPP ($1,000).  Regression results are 

kept constant after they reach a GDPPCP of $30,000 (females) or $50,0000 (males).   

 

The cross-sectional calculation is initial in part because it will not produce results 

consistent with the data for countries, even in the first or base year of a model run.  In the 

first year an additive shift is computed for both male and female smoking rates to 

reconcile 2010 values with regression results.  In future model years, the additive shift is 

evaluated based on regression results: if it is positive (thus producing the forecasted value 

to be above the expected value given by the regression) or for all non-high-income 

countries (initial GDPPCP <= 25k) the shift is converged to 0 over 100 years. If it is 

negative and the country is high income, the shift is kept constant for the entire run 

horizon. The resulting adjusted shift is added to the smoking rate produced by the 

regression. 

 

6.3.6.3  Forecasting Changes in Smoking using Past Behavior and GDP per Capita Expectations 

It is important to recognize not just the initial empirical (or estimated) value of smoking 

rate in our base year for each country, but the trajectory of country-specific change in 

smoking rates. Our approach to capturing the trajectory is a variation on a moving-

average approach.  Every year our first step is to compute a compound growth rate of the 

smoking rate over the last 10 years.  In the second step we also compute the rate of 

change that one would expect based solely on applying the cross-sectional formulation in 

two consecutive years.  The third step is to compute a slowly-changing moving average 

by combining those two growth rate computations, weighting the compound historical 

growth rate 90 percent and the expectation of growth from the cross-sectional 

formulation 10 percent.  
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In the first step described above we obtain every year the compounded growth rate 

(Comp_Gr_Rt) over the previous 10 years. That growth rate is based on historical (or 

constructed) smoking rate data (Smok_Rate).55 

 

𝐶𝑜𝑚𝑝_𝐺𝑟_𝑅𝑡𝑟,𝑝,𝑡=1 = (
𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒𝑟,𝑝,𝑡=1

𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒𝑟,𝑝,𝑡=1−10
)

1
10

− 1 

 

In the second step described above we compute the annual expectation of growth in the 

smoking rate (Exp_Gr_Rt) based on the cross-sectional formulation expectations 

(Smok_Rate_Exp) for the current and previous year. 

 

𝐸𝑥𝑝_𝐺𝑟_𝑅𝑡𝑟,𝑝,𝑡 =
𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒_𝐸𝑥𝑝𝑟,𝑝,𝑡 − 𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒_𝐸𝑥𝑝𝑟,𝑝,𝑡−1

𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒_𝐸𝑥𝑝𝑟,𝑝,𝑡−1
 

 

In the third step, every year we compute what is effectively a moving average of change 

in smoking rates (Mov_Gr_Rt) by combining the compound growth rate for the last 10 

years with the expected value from the preceding to the current year (with 90 percent and 

10 percent weighting, respectively).  

 

𝑀𝑜𝑣_𝐺𝑟_𝑅𝑡𝑟,𝑝,𝑡 = 0.9 ∗ 𝐶𝑜𝑚𝑝_𝐺𝑟_𝑅𝑡𝑟,𝑝,𝑡 + 0.1 ∗ 𝐸𝑥𝑝_𝐺𝑟_𝑅𝑡𝑟,𝑝,𝑡 

 

In the above computation we introduced a number of other algorithmic rules to produce 

what appeared to be reasonable forecasts of smoking rates given the general notion of a 

bell-shaped curve (or rise and then fall) of smoking with income and time. These 

included bounding the cross-sectional expected value formulations at $30,000 for females 

and $50,000 for males so as to avoid complete collapse of smoking rates at high income 

levels. 

 

It is then possible to apply the moving average to obtain what is actually a preliminary 

forecast of smoking rate (although not used in the model, we can call it HLSMOKINGP) 

based on that in the previous year. 

 

𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡 = 𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡−1 ∗ (1 + 𝑀𝑜𝑣_𝐺𝑟_𝑅𝑡𝑟,𝑝,𝑡) 

 

This preliminary smoking rate is then converged to match the result of the regression 

equation over a period of 100 years and yield a near final smoking rate (HLSMOKING) 

 

𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡

= 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑂𝑣𝑒𝑟𝑇𝑖𝑚𝑒(𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑃𝑟,𝑝,𝑡 , 𝑆𝑚𝑜𝑘_𝑅𝑎𝑡𝑒_𝐸𝑥𝑝𝑟,𝑝,𝑡 , (𝐵𝑎𝑠𝑒𝑌𝑒𝑎𝑟 + 100)

− 𝑡) 

 

                                                 
55 The constructed historical smoking data contributes to this computation of the compound growth rate for 

the first 10 years of its computation; thereafter, the computation will rely only on values generated by our 

forecasting.  
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High income countries (with initial GDP per capita at PPP or GDPPCPI > $25,000) then 

are checked to avoid smoking rate growth after they have started to drop, i.e: 

 

If GDPPCPI > $25,000 and 𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡  > 

𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡−1 and 𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡−1 <= 𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡−2 then 

  𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡 = 𝐻𝐿𝑆𝑀𝑂𝐾𝐼𝑁𝐺𝑟,𝑝,𝑡−1 

 

Finally, a multiplier (hlsmokingm) by country and sex is available and applied to the 

smoking rate to compute the final value for the country-sex-year; the default value of the 

multiplier is 1 and alternative values introduce scenarios. Note that having a multiplier 

for a specific sex (e.g. 0.9 for males) and another for “total” or both sexes (e.g. 0.8) will 

produce a multiplicative effect on the forecast of 0.72.  This ability to stack multipliers 

for individual sexes with total or both is not the standard practice in IFs; this may be the 

only example of it. 

 
6.3.6.4  Computing Future Smoking Impact from Future Smoking Rates 

 

With the year-to-year percentage change in smoking rate forecasts from 2010 forward, 

we change the year-to-year values of the smoking impact series 25 years later.  Thus, we 

use the reverse process used earlier–rather than using changes in smoking impact to 

compute smoking rates, we use changes in smoking rates to compute smoking impact. 

 

One complication is that we need smoking impact by age-category. We first compute 

smoking impact in the 4 big age categories of the GBD data. For purposes of affecting 

mortality we then apply the large age category values to each of the underlying 5-year 

categories; for example we compute smoking impact for 30-44 year olds, and then we 

apply the value for 30-34, 35-39, 40-44 year olds. 

 

Even in the big categories, however, as well as in the smaller 5-year categories, a 

consequence of our approach is that the changes in smoking impact year-to-year are 

identical in each age category.  This is an inevitable consequence of our not having 

smoking rates by age–we have no basis for positing different patterns of smoking over 

time by age and therefore for changing the smoking impact by age. 

 

An unfortunate corollary consequence of this procedure is that, in the years between our 

initial forecast year and 2030, a period for which we have the smoking impact forecasts 

of the GBD but are also computing our own smoking impact forecasts, our forecasts will 

differ somewhat from those of the GBD.   Remember, however, that we used GBD 

forecasts to create historical smoking rate series, and in those forecast years through 2030 

are computing smoking impact from the historical smoking rates; thus our smoking 

impact forecasts through 2030 will not differ greatly from those of the GBD.  It would be 

possible for us to actually use the GBD smoking impact forecasts for the 4 age categories 

through 2030 and then initiate our own changes to all 4 categories; we judged that the 

computational intensity of using theirs through 2030 offset the advantages of doing so. 
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Note that it is possible to stop changes in the Smoking Impact forecast in year 2030 and 

beyond by turning off the smoking impact switch, hlsmimpsw = 0. 

 
6.3.6.5  Revised Approach: Forecasting Smoking Rates using a Stages Model 

 

Smoking rate itself is computed in two different ways.  The basic formulation uses only 

the initial condition, historical rates of growth in smoking, and a cross-sectionally 

estimated function linked to the simple and squared values of GDP per capita at PPP.  

The more extended formulation (still in development and testing and therefore not turned 

on as the default approach) is an algorithmic one based on the same general concept of a 

pattern that initially rises with GDP per capita, peaks, and then falls, but with a series of 

parameters that allow much more control over the stages.56  This staged algorithmic 

approach (see Lopez et al. 1994; Shibuya et al. 2005; Ploeg et al. 2009) is turned on with 

a switch (hlsmokingstsw=1; the default =0).  Based on country- and sex-specific trends, 

plus initial prevalence, in the first year each country is placed into one of four sequential 

stages: rising, peak, falling, late.  During the forecast horizon they can move through 

other stages.  The approach is heavily algorithmic and the logic is explained below. 

 

Early to Rising (Stage 1). Conditions for being in group are: Male prevalence rises during 

historic estimate and current prevalence is <=15%. Female prevalence rises at least until 

the last 5 years of history and current prevalence is <=1%. 

 

The forecasting strategy is: Ongoing increase. Use compound growth rate (10-year 

moving average from current year) when it is <5% per year, increase growth rate to 

5%/year over the next ten years. Continue 5% growth rate until country moves into next 

group (i.e. male smoking prevalence > 15%, so country moves to stage 2). In the case of 

females, the previous year growth rate is kept constant until transition to next stage 

(female smoking prevalence > 1%). 

 

Rising to Peak (Stage 2). Conditions for being in this stage are: Male prevalence rises 

during historic estimate and current prevalence is >15%. Female prevalence has been 

rising at least until last 5 years of history and current prevalence is > 1% and < 45%. 

 

The forecasting strategy is: Exponential increase. If exponential rate of increase < e.01x, 

where x=year of forecast (1,2,3,… end of forecast horizon), then increase = e.01x, 

otherwise use constant growth. For females we use an exponential regression (y=ab^x), 

limit annual growth to a maximum of 0.5%. If country moves from stage 1 to stage 2 

during forecast horizon, exponential rate of increase = e.01x, where x=year of forecast 

(1,2,3,… end of forecast horizon - x begins again at 1 when country moves to stage 2 

both for males and females). In base case forecast the ceiling is 65% male prevalence for 

countries with increasing smoking trends.  If male prevalence rises to 65% during 

forecast, country moves to next stage (3). The limit for females is 45% prevalence. 

 

                                                 
56 Cecilia Peterson developed this approach for IFs. 
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Peak to Falling (Stage 3). Conditions for being in stage are: Male prevalence peaks 

during historic estimate (20 years before the base year or later). Female prevalence peaks 

during the last 5 years of history and current prevalence is >= 45%. 

 

The forecasting strategy is: If smoking rate peaks during historic estimate then do 10 

years of exponential decrease from last year of peak (y = ab^x). In other words, 

regression based on historic estimate starting with last year of peak (not all years of 

historic estimate).  

After 10 years, faster exponential decrease:  

 Prevx+1=Prevx*e-.01x, where x=year (1,2,3,… end of forecast horizon - x begins again at 1 

when country begins faster decrease).   

If male prevalence falls to <=20%, then flat rate to end of forecast horizon. 

 

If smoking rate  peaks during forecast slow exponential decrease for first 10 years:  

Prevx+1=Prevx*e-.001x , where x=year (1 to 10) 

Faster exponential decrease for rest of the forecast: 

Prevx+1=Prevx *e-.01x, where x=year (1,2,3,… end of forecast horizon - x begins again at 1 

when country begins faster decrease). 

If male prevalence falls to <=20%, then flat rate to end of forecast horizon. 

 

For Females simply do a slow logarithmic decline: 

SmRt(t) = SmRt(t-1) – 0.05 LN(BaseYear + Yr – 1 – PeakYear) 

If female prevalence falls to <= 15%, then flat rate to end of forecast horizon. 

 

Late (Stage 4). Conditions for being in the stage are: Male prevalence declines 

throughout at least the last twenty years of historic estimation (ie peak year< BaseYear - 

20). Female prevalence declines at least the last 5 years of historic estimation.  

 

The forecasting strategy is: If current male smoking rate (prevalence) >=30% exponential  

decrease (y=ab^x) beginning with last year of peak. In other words, regression based on 

historical data starting with last year of peak (not necessarily all years of historical data). 

Trend continues through forecast horizon or until male prevalence <=20%. If male 

prevalence <=20% then flat rate to end of forecast horizon 

 

IF current male prevalence <30% logarithmic decline (y=a+b*ln(x)) beginning with last 

year of peak. In other words, regression based on historical data starting with last year of 

peak (not necessarily all years of historical data). Trend continues through forecast 

horizon or until male prevalence <=20%. If male prevalence <=20% then flat rate to end 

of forecast horizon. 

 

Female forecast simply uses a logarithmic decline (y=a+b*ln(x)). Trend continues 

through forecast horizon or until female prevalence <=15%. If female prevalence <=15% 

then flat rate to end of forecast horizon. 

 

There are a number of parameters for the stages approach to forecasting smoking rates. 

Because control of tobacco is a major policy objective in many countries, a number of 
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these relate to the representation of a tobacco control score on a 100-point scale 

(hlsmokingtcs) with an  associated parameter to control the elasticity of smoking with 

that score (hlsmokingtcsel), as well as a multiplier on the score (hlsmokingtcsm).  The 

parameters related to tobacco control are: 

 

• Tobacco Control Score: hlsmokingtcs, higher scores reduce growing trend or 

accelerate reduction. 

• Elasticity of relationship between tobacco control score and smoking rate 

(hlsmokingtcsel). 

• Multiplier on tobacco control score (hlsmokingtcsm) 

 

Other parameters related to the stage approach are:  

 

• Smoking Multiplier for Increasing Trend: hlsmokingincm, only affects countries 

in stage 2. 

• Smoking Multiplier for Decreasing Trend: hlsmolingdecm, only affects countries 

in stage 3. 

• Smoking Ceiling and Floor can be controlled using: hlsmokingceiling and 

hlsmokingfloor. 

• Smoking Peak Year can be controlled using: hlsmokingpeakyr. 

 

When the stages approach is turned on the computation of smoking impact from the 

approach is changed from that described for the basic smoking model based on the 

quadratic equation with GDP per capita.  To compute smoking impact when using 

smoking in stages we use linear regressions between Smoking Prevalence and estimated 

Smoking Impact (smoking impact lagged 25 years) to estimate Smoking Impact by large 

GBD age category.  For instance, one of those functions is “Male Smoking Prevalence 

(2005) Versus Male 30 to 44 Smoking Impact (2030) Linear”. The functions were 

computed using smoking rates in 2005 and GBD smoking impact forecasts for 2030. In 

forecasting we apply those functions to smoking rates 25 and 26 years earlier, and obtain 

two values for smoking impact.  We compute the growth rate between those two values 

of smoking impact and apply it to the previous year’s value of smoking impact for each 

of the 4 large GBD age categories. We then reproduce the smoking impact value for each 

5-year age category in the larger GBD categories.  

 

For small values of SI (lower than 1) we restrict the annual change rate to be between -

50% and 100%. If SI is 0 in the base year then it stays at 0. If the estimated value of SI 

reaches 0, and the next year is positive, then a 100% growth rate is used, but if the next 

year is negative then a -50% growth rate is used.  
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7. Outcomes 

There are two main mortality-related outcomes from the Health Module: deaths by cause-

category (DEATHCAT) and life expectancy (LIFEXPHLM).57  From these, IFs 

calculates other relevant outcome variables including: years of life lost (YLL; HLYLL in 

IFs); years lived with disability (YLD; HLYLD); disability adjusted life years (DALY; 

HLDALY); YLLs and YLDs among the working-age population (HLYLLWORK and 

HLYLDWORK,58 respectively, the sum of which would be DALYs for the working 

population); morbidity and the probability of mortality during a user-defined age-range.59  

 

The computation of life expectancy in the health module is a replica of the one in the 

population module, with the only difference being the mortality distribution.  In the initial 

year, these match because of the normalization process but they grow apart as the model 

advances.  DEATHCAT is computed by multiplying the mortality distribution from the 

Health Module by population age categories.60  

 

7.1 Years of Life Lost (YLL) 

Years of Life Lost (YLLs) are computed using the number of deaths in each age category 

multiplied by the number of years they died prematurely (the potential life expectancy at 

the age category as determined by a stored vector of standard life expenctancy):61  

 

Years of Life Lost = Deaths in age category * StdLifeExp for age 

 

There are two extra elements that are considered in the computation of YLL – 

discounting and age weighting.  Discounting represents the preference of individuals for 

current, rather than future, benefits.  Age weighting is an attempt to capture age-specific 

social roles, with working ages more heavily weighted than children or older adults. 

While controversial, both elements are used in GBD studies and are therefore useful for 

standard comparisons. 

 

If we initially considered that the number of years lost per each death is the expected life 

expectancy minus the average age in a given category, then we now need to use the 

following formula to apply both discounting and age weighting: 

 

                                                 
57 Note that LIFEEXPHLM replaces the old IFs variable LIFEEXP which was forecasted in the population 

module. 

58 As of October 2013 we were using the ages 20-64 as the range for computation of these two variables.  

We may want to make that dynamic now that we have dynamic working life years. 

59 The default is child mortality (0 to 5) and adult mortality (15 to 60).   

60 If the user turns off the health model switch (hlmodelsw), IFs stops computing all of the HL variables 

and DEATHCAT (also morbidity and the probabilities of mortality); they have values with the switch set to 

off because they take those of the base case, but they are not used to compute LIFEXP, which would then 

come from the older or legacy population model. It is important to note also that if the health model switch 

is off, it is impossible to expand the age categories beyond 100+.  

61 Randall Kuhn provide the hard-coded vector for standard life expectancy. 
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Where AWC is the age weighting correction factor (0.1658), this constant compensates 

so that the global estimated burden of disease remains the same as if not using age 

weighting. β is the parameter from the age weighting function (0.04). These two 

constants are related and if you want to change the form of the weighting function by 

changing β, then you would have to change AWC too. R is the Discount Rate, which we 

have set to 3 percent to match the GBD study. 

YLLWORK uses the same formulations, but only includes the population of 20 to 64 

year-olds.   

7.2 Years of Life Lost to Disability (YLD) 

External to the model, the IFs project calculated an initial ratio of YLD to YLL based on 

data from the World Health Organization.  Those ratios are regional but specific to cause 

of death category. In the base year of the model, IFs initializes the value for YLDs by 

applying this ratio to YLL.  In subsequent years IFs calculates the growth rate for 

mortality  from the previous year and uses that to forecast the change in morbidity.  The 

percentage decline in disability relative to decline in mortality can be controlled by the 

parameter (hlmorbtomortgthport).  IFs estimates YLD from the ratio of regional 

morbidity to mortality (YLD/YLL). This ratio is used for initialization and then the 

growth rate for mortality is computed and applied to forecast morbidity. Morbidity results 

can then be adjusted with a multiplier (hlmorbtomortgthport) that can be handled by the 

user across time. This multiplier is specific for each subtype, with default values detailed 

in the table below.  As an example, the value of 50 percent for cardiovascular disease  

(hlmorbtomortgthport=0.5) suggests that morbidity decreases at half the rate of 

mortality.  Because malaria is set at 100 percent (hlmorbtomortgthport =1.0), morbidity 

will change at exactly the same rate as mortality; a higher value for the parameter could 

be used to represent a situation in which morbidity declined faster than mortality. 

 When the morbidity to mortality parameter is set to a value different than 1, we 

have an asymmetry in the growth applied, for example see the case mentioned above 

where cardiovascular disease is set to 0.5, a decrease of 10% in mortality will equal a 

decrease of 5% in morbidity, say the level of mortality was at 10 deaths per 1000 person, 

then mortality would go down to 9, and if morbidity was also set at 10 per 1000 person, 

morbidity then would reach 9.5. Now see what happens if mortality immediately jumps 

back up by the same amount, say from 9 to 10, that's an 11.11% increase, if we were to 

apply directly 50% of that increase to morbidity (5.56%)  we would overdo the morbidity 

bounce back, note that 9.5 * 1.0556 = 10.0278. In order to avoid this asymmetry in the up 

side of morbidity we are instead using the following logic: 

 

Pd is the portion that mortality decreases 

Pu is the portion that mortality increases to jump back to the original value 

 

Then we have that: 
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1 + Pu = 1/(1 + Pd) 

 

Then when mortality increases by a portion Pu, is like recovering from a previous 

decrease by a portion Pd. When Pu and Pd are applied as is to morbidity, then the 2 move 

together symmetrically, but when we start applying a factor f to Pu and Pd the problems 

shown above emerge. 

 

If we have a decrease of Pd in mortality and we want a decrease of Pd*f in morbidity, we 

need to consider that in order to recover from this decrease we would need to multiply 

morbidity by: 1/(1+Pd*f), which is not the same as 1 + Pu*f, as you can see from the 

previous equation, so if we solve for Pd in the equation for mortality we get: 

 

Pd = 1/(1 + Pu) - 1 

 

Replacing in the equation for morbidity we then get the factor we need to apply to 

morbidity when mortality goes up by a portion of Pu: 

 

1/(1+(1/(1 + Pu) - 1)*f) 

 

Note how this reduces to simply 1+Pu when f = 1. 

For the previous example we would have: 

1/(1+(1/(1 + 0.1111) - 1)*0.5) = 1.0526 

and when we apply this to the morbidity value of 9.5 we get the original 10 that we were 

looking for. 

 

In conclusion, when the portion parameter is different than 1, like it is for Cardio 

Vascular disease in the base case, and we're increasing mortality by a portion Pu, then we 

multiply morbidity by: 1/(1+(1/(1 + Pu) - 1)*f) 

 

In the case where we're decreasing mortality, we do use the simple 1 + Pd*f formulation 

for morbidity. 
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Percentage decline in disability relative to decline in mortality  

Group I Percentage change in disability 

Diarrhea 75 (hlmorbtomortgthport=.75) 

Malaria 100 

Respiratory 100 

Other communicable 75 

HIV/AIDS Modeled separately 

Group II  

Cardiovascular  50 

Digestive disorders 100 

Malignant neoplasms 100 

Diabetes 100 

Mental health Not Applicable; given value of -1 

Chronic respiratory 100 

Other NCDs 50 

Group III  

Intentional injuries 75 

Traffic accidents 75 

Other non-intentional injuries 75 

 

Once morbidity is computed, the calculations to find YLDs (HLYLD) are identical to 

those for YLLs (HLYLL)–using morbidity instead of mortality to compute the number of 

people affected by a given disease.  HLYLDWORK again focuses only on the population 

aged between 20 and 64. 

 

Morbidity related to mental health is the one exception to the above methodology.  IFs 

computes an initial ratio of YLD/POP based on WHO data, keeping the ratio constant 

over time. 

 

It's also important to note that once mortality reaches 0, then morbidity stays constant for 

the rest of the horizon, unless mortality starts to increase again. 

 

7.3 Disability adjusted life years (DALY) 

DALYs are computed by summing YLLs and YLDs.  YLLWORK and YLDWORK (the 

sum of which would be DALYs for the working population) include only the 20 to 64 

year-old population.   
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7.4 Morbidity 

We have added 3 parameters to control Morbidity. 

 

NAME DESCRIPTIO

N 

DIMENSION

S 

DEFAUL

T 

HORIZO

N 

hlmorbm Target Morbidity 

Multiplier 

None -1 All Years 

hlmorbconv Convergence to 

Target Morbidity 

None 20 All Years 

hlmorbtomortgthpor

t 

Morbidity to 

Mortality growth 

portion 

Disease sub-

types (15) 

1 All Years 

 

The first one works as a both a switch and a multiplier; in terms of its functioning as a 

switch, a value of -1 will turn it off.  When it is given a value above 0 it functions as a 

multiplier. The multiplier works as a portion of initial morbidity to compute Target 

morbidity, so that if you set it to 1, it will keep morbidity constant, and if you set it to 

0 it will  eliminate morbidity. The second parameter is used to indicate how many 

years to converge from the regular Health Module morbidity to the Target morbidity.  

Note that if you want to keep morbidity constant you need to change the convergence 

parameter to 0 to avoid using Health Module morbidity at all. 

 

The last parameter controls the change rate of morbidity as described in section 7.2. 

 

7.5 Mortality probabilities 

IFs allows the user to compute the probability that a person of a given age (e.g. 15) will 

live to reach another age (e.g. 60)–to compute it look for under the Display Type Options  

on the specialized display for a J-curve (there are probabilities and rates for children and 

adults).  In this example, the probability of a 15-year old dying before she reaches 60 

equals 1 minus the cumulative probability of surviving (lx) to 59 given that she has 

survived to 15: 

 

P(15-59) = 1 – lx(59) / lx(15) 

 

In order to compute lx at age j we need to consider the cumulative effect of the previous 

age category and the probability of death in the current age category (nqx). Lx(0) is 

assumed to be 1, given that we are only considering deaths for people that are born alive: 

 

lx(j) = lx(j-1) * (1 - nqx) 

 

The probability of death at the current category is computed based on the mortality of the 

age category nMx, the number of years in the given category N (5 for most of the IFs age 

categories), and the average years lived within the same category nax, which in most 

cases is 2.5, but can be lower for shorter age categories: 
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nqx = (N * nMx) / (1 + ((N - nax) * nMx)) 

 

This adjustment is necessary because nMx is the mortality rate of the 5 year period 

(which is not the same for each of the 1 year periods within it). The mortality rate nMx 

already considers that some people die in the middle of the period, which we don’t need 

for the probability nqx, which is why in general probabilities are lower than mortality 

rates and more pertinent for older ages where people tend to die earlier in the age 

category. 

 

Although the infant age category covers a shorter age range, the rate correction is in some 

ways a bigger issue because infants tend to die within the first days of life. The basic 

framework for understanding nax in this category is thus that the higher the mortality, the 

higher the average years lived nax.  In a highly developed country such as Sweden, 

nearly all infant mortality takes place in the neonatal period (so nax is almost = 0).  

Alternately, in a country such as the Congo, infant mortality takes place throughout the 

year (though it is still concentrated in the neonatal period) and nax rises fairly 

consistently with nMx.  This has been implemented in the following way: 

 

Average years lived by those who die (per Keyfitz) for Infants 

 

            If nMx >= 0.107 Then 

             nax = 0.34 

Else 

             nax = 0.049 + 2.742 * nMx 

 

When estimating nax for children aged between 1 and 4, the logic becomes that child 

deaths between age 1 and 5 are a prolonged extension of infant mortality. Estimations 

have thus shown that nax is more directly tied to infant mortality than it is to nMx for its 

own age category. In other words, countries with very high infant mortality also 

experience elevated child mortality, mostly concentrated in the 1 - 2 age range.  Thus as 

infant mortality rises so does child mortality, pulling nax away from 2: 

 

Average years lived by those who die (per Keyfitz) for children 1 to 4 

 

If infMort >= 0.107 Then 

nax = 1.356 

 Else 

             nax = 1.587 - 2.167 * infMort 
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8. Forward Linkages 

Chapter 7 of Hughes, Kuhn, Peterson, Rothman, and Solorzano (2011) elaborated the 

forward linkages of the health model to other parts of the IFs system at the time of that 

volume's completion.  It began by discussing a controversy in the literature about whether 

the effects on economic well-being (as indicated by GDP per capita) of improvements in 

life expectancy are positive or negative.  It went on to devote much attention to three 

major and general pathways of impact between health and GDP, each of which 

corresponds to a major element in standard production functions and that in IFs:  labor, 

capital, and multifactor productivity.  The equation documentation uses the same division 

and then provides some attention to potential forward linkages that do not involve those 

same three paths (notably the impact of health on public spending on health on the years 

of education attained by members of society and the quality of that education. 

 

8.1 Population and Labor Supply 

The IFs demographic model captures the mechanical or accounting effects of mortality 

on population.  A key pathway passes from mortality through adult age population to 

labor supply (including aging-related lags).62  Similarly, IFs captures the mechanical 

effect of mortality on fertility through the death of women of childbearing age.   

 

The most important non-mechanical linkage is almost certainly the relationship between 

child mortality and fertility. IFs forecasts fertility as a relationship with infant mortality, 

the log of educational level of those aged 15 and older (neither the education of women 

alone nor the education of those 15-24 work as well), and the percentage use of modern 

contraception.  Adding the rate of infant mortality boosted the overall adjusted R-squared 

to 0.84. 

 

trtrtrtr CONTRUSEEDYRSLNINFMORTTFR ,,,, *009.0)15(*8327.0*21.08812.3   

R-squared = 0.8345; other terms and algorithmic specifications modify the relationship, 

most importantly a term that slowly shifts TFR over time and the specification of a 

minimum level toward which the function slowly converges if it overshoots on the 

downward side. 

8.2 Capital stocks 

Most capital stock consists of buildings and machinery for producing goods and services; 

some representations may include land also, but most treat land separately and largely as 

a constant (although land developed for crop production or grazing can, in fact, be highly 

variable).  Most immediately, investment increases capital stock and depreciation reduces 

it.  Although there is certainly some impact of morbidity and mortality on the rate of 

depreciation of both built physical and natural capital, the relationship may not be 

substantial and we do not understand it well enough to model it.  Turning our gaze to the 

paths that affect investment, the three major ones run though health spending, which can 

crowd out savings and investment, through the age-structure of societies, which affects 

                                                 
62 IFs also includes income-based formulations for changing the female participation rate. 
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the savings rate, and through investment from abroad, which can augment that generated 

domestically.   
 

The IFs modeling system treats capital stock dynamically over time, investing in it and 

allowing it to depreciate.  Investment is responsive to both domestic savings and foreign 

flows.  Thus, the necessary elements for considering the impact of morbidity and 

mortality, via paths such as those across health spending and age structure, are part of the 

economic model’s core structure.   

 

With respect to health spending, to which we return later, the IFs model uses a social 

accounting matrix (SAM) structure.  Thus the flow of funds into health spending 

automatically competes with other consumption uses and with savings and investment.  

In addition, health spending does affect mortality . We focus here on the paths versus the 

age-structure and foreign direct investment. 

 

Age Structure and Domestic Savings.  The paths in IFs that link age structure most 

directly to domestic savings have two important elements.  The most fundamental one 

represents the understanding of life-cycle dynamics in income, consumption and savings.  

The cycle for income is fairly clear-cut with a peak in the middle to latter periods of the 

working years.  Workers set aside some portion of income as savings and that portion, 

too, tends to peak in the middle and late period of working years.  Society-wide savings 

themselves become negative after retirement age (65 in the Base Case scenario) even 

though some portion of the population will continue to work. The second fundamental 

element is that both the horizon of life expectancy and the average income level of a 

society can have an impact on the portion set aside for savings and the degree to which it 

rises and then falls.  Thus, for example, the life-cycle “bulge” of savings may be earlier 

and flatter in developing countries.  

 

We implemented the representation of savings and investment in accord with that 

understanding.  Relying upon analyses of selected countries that Fernández-Villaverde 

and Kruegger (2004 and 2005) and Deaton  and Paxson (2000) undertook, we extracted 

general stylized patterns of the savings life cycle to represent more and less developed 

(and lower life expectancy) countries. In forecasting we use the pattern for less developed 

countries when life expectancy falls below 40 years, use that for more developed 

countries when life expectancy exceeds 80 years, and interpolate in between for all other 

countries.  The result of this largely algorithmic approach63 is an adjustment factor 

(SavingsAgeAdj) that augments or reduces investment.  

 

In addition, investment is somewhat augmented or reduced as a direct result of changing 

life expectancy.  Life expectancy is compared over time with an expected value (tied to 

cross-sectional estimation with income).  That difference is compared to the difference in 

the initial year and, if it rises, augments investment. 

                                                 
63 See the subroutine SavingsDemogAdj in routine Populat.bas, which draws upon table IncConSav in 

IFs.mdb  with different patterns of income, consumption, and savings for more developed countries 

(MDCs) and  less developed countries (LDCs) across age categories; in general, peaks of income, 

consumption, savings occur the in late 40s and savings turn negative at 65. 
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Although conceptually tied to savings rates, neither the life-cycle analysis nor the life-

expectancy term directly affect savings in IFs.  Instead, they affect investment directly 

and savings indirectly via the dynamics in IFs that balance savings and investment over 

time. 

 

Foreign Direct Investment. The path linking health to foreign direct investment is 

potentially quite important.  Alsan, Bloom and Canning (2006: 613) report that one 

additional year of life expectancy boosts FDI inflows by 9 percent, controlling for other 

variables.  We have implemented that relationship in IFs.  The representation of FDI in 

IFs captures the accumulation over time of FDI inflows in stocks of FDI, as well as the 

accumulation of FDI outflows in stocks.  In addition, the stocks set up their own 

dynamics, including the tendency for stocks to reinforce flows.  For that reason, we have 

set the base case parameter for the impact of each year of life expectancy on FDI flows to 

0.05 (5 percent), lower than the estimate of Alsan, Bloom and Canning (2006). 

 

 

8.3 Productivity 

Health outcomes impact productivity through a variety of pathways (see Figure 8.3).  

Overall the function for multifactor productivity from human capital (MFPHC) is a sum 

of a term linked to educational expenditures (EDEXPCONTRIB) and three terms of 

interest to us here because mortality and morbidity affect them.  Those three of interest 

are adult stunting (STUNTCONTRIB), disability (DISABCONTRIB) and years of 

education (EDYRSCONTRIB). We detail these three contributions in turn. 
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Stunting Contribution. In the IFs health module, the prevalence of adult stunting 

(HLSTUNT) relates negatively to overall productivity (an elasticity of -0.025, in mfpstunt).  

In extreme cases, stunting could cost as much as 1 percent of economic growth.   

)(

*)( 1

t

r

t

r

t

r

t

r

t

r

GDPPCPFMPSTUNTINGCO

where

mfpstuntMPSTUNTINGCOHLSTUNTIBSTUNTCONTR



 

 

 

We compute HLSTUNT in the health model itself.  We initialize adult stunting in a long-

term lagged relationship (using a moving average controlled by the parameter 

hlstuntyrs)64 with child malnutrition and child severe acute malnutrition and forecast it as 

a function of malnutrition, SAM, and child mortality as a proxy for morbidity. Initial 

                                                 

64 The lag is initialized to 25 years, found as the difference from the midpoint of childhood (7.5) to the 

midpoint of adulthood (32.5). 
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values in 2005 range up to about 55 percent for India and Bangladesh and even over 80 

percent for Somalia; in the base case these generally but not universally decrease.65   

 

To initialize HLSTUNT in the preprocessor, IFs must first estimate historic levels of 

childhood undernutrition (MALNCHP):66   

 
6721.0*853.23  GDPPCPMN  

 

First we find the result of this function with GDPPCP numbers from 2005, then we 

compute an additive shift factor to match initialization data for MALNCHP(2005).  

Second we compute the result of the function with GDPPCP from 1980 and apply the 

shift factor to estimate HLSTUNT in 2005.  We use a limit of 80% for the maximum 

possible stunting value.  

 

Since there lies some uncertainty as to whether SAM has a disproportionate impact on 

stunting compared with child undernutrition, we have updated the forecast of HLSTUNT 

to include MALNCHPSAM, with the parameter malnchpsamtostunt, which controls to 

what degree MALNCHPSAM affects HLSTUNT, set to zero initially. IFs forecasts 

HLSTUNT using an extremely slowly moving average:  

 

𝐻𝐿𝑆𝑇𝑈𝑁𝑇𝑡,𝑟

=
𝐻𝐿𝑆𝑇𝑈𝑁𝑇𝑡−1,𝑟 ∗ (ℎ𝑙𝑠𝑡𝑢𝑛𝑡𝑦𝑟𝑠 − 1) + 𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑟 + (𝑀𝐴𝐿𝑁𝐶𝐻𝑃𝑆𝐴𝑀𝑟 ∗ 𝑚𝑎𝑙𝑛𝑐ℎ𝑝𝑠𝑎𝑚𝑡𝑜𝑠𝑡𝑢𝑛𝑡)

ℎ𝑙𝑠𝑡𝑢𝑛𝑡𝑦𝑟𝑠
+ 𝐻𝐿𝑆𝑇𝑈𝑁𝑇𝐻𝑒𝑖𝑔ℎ𝑡 

 

Childhood malnutrition, morbidity, and SAM do not give rise to all disability in working 

years; much also comes from disabilities arising during the working years. IFs therefore 

also calculates millions of years of living with disability related to mortality rates specific 

to the working aged-population.67   
 

8.4 Additional potential forward linkages 

There are at least three additional forward linkages that could be usefully added to the 

model.   First, we know that morbidity affects health spending, but the model does not 

have that relationship (change in health spending is linked instead to change in GDP per 

                                                 
65 Global data on stunting among adults appear nearly nonexistent. UNICEF (2009:5) suggests that under-5 

stunting exceeds that of malnutrition (200 versus 130 million) and that stunting is nearly irreversible with 

aging; these facts suggest very high percentages of stunting among global adults, concentrated in Africa 

and Asia.   

66 While IFs includes historic data series from WDI and WHO for child undernutrition, many countries do 

not have data for 1980 (25 years prior to 2005, our initial year).   

67 As a quick reality check on those numbers, dividing disability years for the working population by 

population aged 15-65 generates numbers in 2005 that range from around 0.20-0.27 at the top end of the 

range (Timor-Leste, Afghanistan, Montenegro, Puerto Rico, Cambodia, and mostly other African 

countries) to 0.05-0.06 at the bottom end (Kuwait, UAE, Cape Verde, Algeria, Japan and mostly other rich 

countries).    
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capita).  Because health spending competes with other government spending (IFs does 

not represent private health spending separately from public), adding such a linkage 

would affect other spending and/or the total expenditure and revenue balance and 

therefore the level of taxation.   

Second, we know that health affects the ability of populations to obtain education and the 

quality of that received.  IFs includes enrolment terms to which health could be added. 

Third, health will affect distribution of income and economic well-being, although that 

relationship might be particularly difficult to represent. 

Certainly there are other forward linkages of mortality and morbidity that the model 

might include. 
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9. Conclusion 

The health module significantly adds to the overall utility of the IFs forecasting system 

by improving projections of mortality and other health related outcomes.  Users can now 

explore age, sex, and cause-specific mortality and morbidity out to 2100 and consider 

how changing patterns might influence other demographic, social, and economic 

variables.   

This document supports our intention to make the IFs model fully transparent to all users 

by providing technical documentation detailing model inputs, data sources, and 

regression equations.  We welcome all comments and questions. 
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Appendix 

Appendix Table 1 – Cardiovascular Beta Coefficients (IFs Project Re-estimation) 

Sex Age Variable Estimate 

Female 30-44 Intercept -0.56708 

  LnGDPPCP 1.434976 

  LnGDPPCP2 -0.08148 

  LNSI 0.013229 

  T -0.02083 

  LnEdYrsOver25 -0.26159 

 45-59 Intercept -4.14287 

  LnGDPPCP 2.535495 

  LnGDPPCP2 -0.14355 

  LNSI 0.027787 

  T -0.0211 

  LnEdYrsOver25 -0.06727 

 60-69 Intercept 1.394147 

  LnGDPPCP 1.557257 

  LnGDPPCP2 -0.08679 

  LNSI 0.01519 

  T -0.01879 

  LnEdYrsOver25 -0.14311 

 70+ Intercept -2.42923 

  LnGDPPCP 2.718893 

  LnGDPPCP2 -0.16091 

  LNSI 0.011117 
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  T -0.01162 

  LnEdYrsOver25 0.202314 

Male 30-44 Intercept -7.10273 

  LnGDPPCP 2.706356 

  LnGDPPCP2 -0.14545 

  LNSI 0.024695 

  T -0.01319 

  LnEdYrsOver25 -0.09248 

 45-59 LnEdYrsOver25 -0.09248 

  Intercept -6.23361 

  LnGDPPCP 2.829483 

  LnGDPPCP2 -0.15151 

  LNSI 0.061432 

  T -0.01513 

  LnEdYrsOver25 0.021862 

 60-69 Intercept -1.48587 

  LnGDPPCP 2.077141 

  LnGDPPCP2 -0.11296 

  LNSI 0.040964 

  T -0.01443 

  LnEdYrsOver25 0.055058 

 70+ Intercept -0.41857 

  LnGDPPCP 2.188262 

  LnGDPPCP2 -0.12904 
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  LNSI 0.061957 

  
T -0.01231 

  
LnEdYrsOver25 0.22355 
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