Does half a degree of global warming matter? Results from the BRACE 1.5 study

Brian O'Neill, University of Denver Special thanks: Travis Aerenson, Flavio Lehner, Angie Pendergrass, Xiaolin Ren, Ben Sanderson, Gary Strand, Claudia Tebaldi, Yangyang Xu, Yaqiong Lu Additional thanks: Ed Byers, Shinichiro Fujimori, Reto Knutti, Jean-Francois Lamarque, David Lobell, Matthias Weitzel, ... Payne Institute, Colorado School of Mines

29 October 2018

INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

Global Warming of 1.5°C

An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

The Washington Post

The world has just over a decade to get climate change under control, U.N. scientists say

The New York Times

Major Climate Report Describes a Strong Risk of Crisis as Early as 2040

FP

The Hope at the Heart of the Apocalyptic Climate Change Report

Global total net CO2 emissions

Billion tonnes of CO₂/yr

Do impacts differ substantially between 1.5 and 2 C of warming?

A special collection in Environmental Research Letters K. Ebi & S. Gourdji, Guest Editors

Conceptual framework: Avoided impacts

BRACE 1.5: 2 C stabilization vs. 1.5 C stabilization

The Paris Agreement (2015)

Aims to limit global warming...

"to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels"

2°C target previously agreed in Copenhagen Accord (2009)

Just released: IPCC Special Report on 1.5 Degrees

Climate model simulations

CESM 1.0 simulations (Large Ensemble version)

Designed to stabilize at 1.5 or 2 C, or to overshoot 1.5 C

10+ initial condition ensemble members per scenario

Sanderson et al., 2017

0

Mean temperature change, 2 C scenario, (2071-2100) – (1976-2005)

Mean temperature differences, 2 C vs 1.5 C, (2080-2100)

Sanderson et al., 2017

Mean preciptation change, 2 C scenario, (2071-2100) – (1976-2005)

Mean precipitation differences, 2 C vs 1.5 C, (2080-2100)

Sanderson et al., 2017

Indices of impact-relevant extremes

<u>Temperature</u>

Annual max/min of daily temperature Warm spell duration

Precipitation

Days >10mm Precip intensity Max 5-day precip Total precip, days >95th percentile

Agriculture-related

Dry spell duration Annual frost days

Growing season length

Aerenson et al., 2018.

of indices with stat. signif. differences in 1.5 vs 2 C scenario

Agric. Indices

of indices with stat. signif. differences in 1.5 vs 2 C scenario

signif. es in C al., 2018.

Aerenson et al., 2018.

Multi-sector climate and vulnerability hotspots

5

ILASA

Multiple indicators (14) across 3 sectors

Water

- Water scarcity
- Flood risk

Energy

- **Cooling degree days**
- Clean cooking access

Land

- Crop yields
- Habitat degradation

Multi-sector climate and vulnerability hotspots

Global population exposure to substantial multi-sector risk

	1.5 C	2 C
Exposed	20%	35%
Exposed & vulnerable	3%	6%

Results more sensitive to socio-economic development pathway

Ag & Land Use

CLM Crop Yields

1.5/2 C Ensembles

2.5

...

Tebaldi & Lobell, 2018.

Ren et al., subm.

Global crop yield, empirical model

Estimated from global aggregated yield and climate data, 1962-2014

Projection results, 1.5 C vs 2 C With CO₂ fertilization:

No significant difference in wheat yields

A few percent lower yields in maize

Without CO₂ fertilization:

A few percent lower yields for both wheat and maize

Tebaldi & Lobell, 2018.

Integrated assessment framework

Community Land Model (CLM)

Eight crop types

Wheat, temperate/tropical maize, temperate/tropical soybean, rice, cotton, sugarcane

N fertilizer, irrigation

Integrated Population-Economy-Technology-Science (iPETS) Model: 9 Regions, with Trade

iPETS model structure and components

Economic initial conditions (region, sector)

Inputs

(SSP-based)

Projected **population**

Technological progress: projected productivity of land, energy, labor

Policies (carbon tax, emissions permits, non-climate, etc.)

iPETS

Model

Climate Impact on Crop Growth (Community Land Model)

Total economic output (GDP)

Outputs

Quantities of goods produced and consumed (energy, food)

Prices of goods (energy, food)

Aggregate land use (cropland, pasture)

CO₂ emissions from energy use

Difference in impacts, 1.5 vs 2 C

Default assumptions: With CO_2 fertilization (381 vs 443 ppm) Armington elasticity = 2 Single CESM ensemble member

Uncertainty variants

Model	Variable	Value
Climate	CESM ensemble member	High regional temperatures
		Low regional temperatures
Crop	CO ₂ fertilization	Included
		None
Economy	Trade elasticity	High (6.45)
		Medium (2.0)
		Low (0.45)

Difference in impacts, all uncertainties

iPETS agriculture conclusions

- Sign of change in regional agricultural impacts between 1.5 and 2 C scenario is uncertain
- Largest source of uncertainty is CO₂ fertilization
- Caveats:
 - Single climate model and crop model
 - Treatment of mitigation
 - Additional uncertainties in economic model

BRACE 1.5 Conclusions

Temperature & precipitation:

Means and many extremes differ significantly. Implication for impacts?

Agriculture

Aggregate impact differences small or of uncertain sign Building energy

Small differences in economic impacts

Exposure to multi-sector risks

Substantial differences in exposure

BRACe1.5 Benefits of Reduced Anthropogenic Climate Change

Do impacts differ substantially between 1.5 and 2 C of warming?

A special collection in Environmental Research Letters K. Ebi & S. Gourdji, Guest Editors

Climate: Climate simulations to assess impacts (Sanderson et al.) Approximating low warming scenarios (Tebaldi & Knutti)

Extremes: Changes in extreme temp/precip (Aerenson et al.)

- Health: US heat wave-related mortality (Anderson et al.)
- Agric.: Economic & biophysical impacts on agriculture (Ren et al.) Empirically modeled differences in yields (Tebaldi & Lobell)
- Energy: Economic impacts of energy demand changes (Chan et al.)
- Multiple: Exposure/vulnerability to climate hotspots (Byers et al.)