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The Frederick S. Pardee Center for International Futures 
 

The Frederick S. Pardee Center for International Futures is based at the Josef Korbel School of 

International Studies at the University of Denver. The Pardee Center specializes in helping 

governments, international organizations, and private sector organizations frame uncertainty and 

think strategically about the future. The Pardee Center focuses on exploring past development 

trends, understanding the complex inter-relationships that drive development outcomes, and 

shaping policies that communicate and achieve a clear development strategy.  

 

International Futures (IFs) is a free and open-source quantitative tool for thinking about long-

term futures. The platform helps users to understand dynamics within and across global systems, 

and to think systematically about potential trends, development goals and targets. While no 

software can reliably predict the future, IFs forecasts — which are calculated using historical 

data and a mix of quantitative modelling approaches — offer a broad and transparent way to 

think about the tradeoffs in policymaking. 

 

There are three main avenues for analysis in IFs: historical data analysis (cross-sectional and 

longitudinal) of more than 3,500 series, Current Path analysis (how dynamic global systems 

seem to be developing), and alternative scenario development (exploring if-then statements about 

the future). To do this, IFs integrates relationships across 186 countries and 12 core systems, 

including: agriculture, demographics, economics, education, energy, environment, finance, 

governance, health, infrastructure, international politics, and technology. The sub models for 

each system are dynamically connected, so IFs can simulate how changes in one system may 

lead to changes across all others. As a result, IFs endogenizes more variables and relationships 

from a wider range of key development systems than any other model in the world.  

 

IFs is developed by The Frederick S. Pardee Center for International Futures, based at the Josef 

Korbel School of International Studies at the University of Denver in Colorado, USA. It was 

originally created by Professor Barry B. Hughes.  

 

Learn more about IFs or download the tool for free at pardee.du.edu. 
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Figure 1.A representation of the dynamic interactions across systems in the International Futures (IFs) model 

 

The Current Path Scenario 
 

The IFs Current Path is a collection of interacting forecasts that, while dynamic, represent a 

continuation of current policy choices and environmental conditions. Although the Current Path 

generally demonstrates continuity with historical patterns, it provides a structure that generates a 

wide range of non-linear forecasts rather than just a simple linear extrapolation of historical 

trends. The Current Path assumes no major paradigm shifts, seismic policy changes or impactful 

low-probability events. Given that the Current Path is built from initial conditions of historical 

variables and is analyzed in comparison to other forecasts of particular issue areas, it can be a 

valuable starting point to carry out scenario analysis and construct alternative future scenarios. 
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Executive Summary 

 
Artificial intelligence, a general term for the science and development of machines capable of 
completing tasks that would normally require human intelligence, is an exciting field of research 
and technology with deep potential impacts across the realm of human activity. A quantitative 
forecast of AI, while challenging, is important in helping us better understand how artificial 
intelligence is unfolding and its potential implications at a national, regional, and global level. 
 
This paper describes a global AI representation and forecast capability out to the year 2100. A 
series of AI indices were developed within the International Futures (IFs) integrated assessment 
platform, a quantitative macro-level system that produces dynamic forecasts for 186 countries. 
IFs models 11 different aspects of global human development, including: agriculture, economics, 
demographics, energy, infrastructure, environment, water, governance, health, education, 
finance, technology, and international politics. The models are extensively interconnected; 
changes in one affect every other. 
 
Given its comprehensiveness, IFs is uniquely placed to forecast AI and explore its wide impact. 
This report focuses on the conceptualization and operationalization of AI indices and provides 
initial forecast results. An exploration of the quantitative impact of AI is left for future research, 
but the final section of the report lays out three main areas ripe for exploration within the IFs 
context: economic productivity, labor, and international trade with production localization 
(including that associated with growth of renewable energy). 
 
Following the lead of others, this forecasting exercise conceptualizes artificial intelligence in 
three categories: narrow artificial intelligence, general artificial intelligence and 
superintelligence. Today’s AI is very much limited to the most basic and narrow AI 
technologies. The evolution of general AI is debated and the timing uncertain. Since the birth of 
the AI research field in the 1950s, progress has been incremental and uneven. Over the last ten 
years, however, AI has enjoyed something of a surge in terms of both performance and funding. 
In the last five years alone the performance of AI technologies has reached a point where they 
are both commercially applicable and useful. Nevertheless, almost all progress has been 
restricted to narrow AI. Important drivers of AI’s technological progress include: i) improved 
hardware capacity, helped by the rise of cloud computing, ii) stronger software, aided by the 
growth of Big Data, iii) an explosion of commercially-oriented funding for AI technologies, and 
iv) the ever growing reach of information and communication technology. 
 
The AI representation in IFs forecasts the development of six encompassing (though neither fully 
exhaustive nor mutually excludable) areas of narrow AI technology: computer vision, machine 
learning, natural language processing, the Internet of Things (IoT), robotics, and reasoning. The 
forecast of each is initialized from an assessment of performance-based capability, funding 
levels, and research attention (publications). Each index progresses based on differentially 
estimated annual growth rates of each technology. As the index score for all approaches 10, we 
forecast general AI technology to become available. The level and capacity of general AI is 
forecast using a machine IQ index score, roughly analogous to human IQ scores. When machine 
IQ scores approach superhuman levels, we forecast the emergence of superintelligent AI.  
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Under this approach, the IFs forecast of AI is conceived of from the “bottom-up.” The progress 
of important narrow technologies, understandably advancing at different rates, ultimately 
generates general AI technology as these technologies improve along each narrow index and 
become more integrated. In the forecast, the emergence of general AI is constrained in particular 
by the rate of improvement in and development of machine reasoning and associated 
technologies, a foundational element for any general AI. Following the emergence of general AI, 
positive feedback loops from increased investment, technological “know-how”, and popular 
interest following will lead to superintelligent AI. 
 
The Current Path forecast in IFs estimates that general AI could appear between 2040 and 2050. 
Superintelligent AI is forecast to be developed close to the end of the current century. 
Acknowledging the vast uncertainty over AI’s rate and breadth of development, the tool is 
designed to be maximally flexible so that users of the IFs model can adjust the forecast relative 
to their own expectations of AI’s progress. We already frame the Current Path with faster and 
slower scenarios of development. 
 
Of significant utility will be using this set of indices to explore AI’s potential impact on human 
society. AI will improve economic productivity, but assessments of current and future 
contributions vary widely. The extent of impact will be affected by the level of development, 
uptake among business and industry, and policymaking. Labor is also already being affected, 
with jobs in manufacturing and select service sectors being automated. AI’s effect on labor is 
hotly debated; some predict severe job losses and social instability while others predict AI will 
create swathes of new jobs while freeing humans from mundane toil to be more productive. AI 
may also accelerate the “localization” of production centers, with implications for the 
international movement of goods and services. For instance, AI will likely revolutionize the 
adoption of renewable energy technologies, affecting international trade of the world’s most 
valuable traded commodity: oil and petroleum products.  
 
We appreciate that no quantitative modeling exercise can fully represent the impact of artificial 
intelligence, nor can it capture its evolution accurately. Nevertheless, we believe this work 
represents an important first attempt at a quantitative forecast of global AI development and 
opens the door for an essential exploration of the long-term impact. 
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Introduction and Overview 
 
The term Artificial Intelligence, or AI, conjures widely different images and expectations for 
many different people. Some imagine a world filled by autonomous cars zipping around without 
human input. Others may imagine a world where intelligent robots work alongside humans 
helping to remove much of the drudgery and daily toil from their lives. Some see rapid advances 
in healthcare and healthcare technologies, enabling humans to live healthier, fitter, and longer 
lives. Some may see a world where AI becomes the great equalizer, lowering the cost of 
production and making a wide range of goods available to broad swathes of the population. And 
yet for some, AI conjures fear and foreboding, a world characterized by mass dislocation of labor 
and inequality, generating vast social instability. The great fear is that artificial intelligence 
comes to surpass human capability with devastating and unknown consequences. 
 
Despite these widely different predictions of future AI and human interaction, artificial 
intelligence technologies today remain remarkably limited and narrow, capable of generating 
only simple outputs like responding to questions, or identifying specific objects within images, 
or identifying anomalies from complex patterns of data. The world of autonomous agents with 
intelligence equaling or even exceeding that of humans is still largely a fantasy. And yet today’s 
narrow AI technologies are advancing rapidly, doubling or even tripling performance over the 
past five to ten years. AI has been called the “Fourth Industrial Revolution,” (Schwab and 
Samans, 2016) a recognition its potential impact across a number of important sectors of human 
development.  
 
AI will have far-reaching effects on the economy; enhancing productivity while at the same time 
shifting the value-add away from labor and towards capital-intensive machinery and industries. 
The direct effects on labor are hotly debated. AI technologies are already replacing labor in 
manufacturing and in some service sectors today, and pessimists suggest this is a harbinger of a 
broader trend that will lead to massive hollowing out of jobs brought on by automation of tasks 
and employment. Optimists counter this by pointing out that technology has historically been a 
net job creator, leading to the development of entirely new industries and specializations 
previously unavailable. AI will simply free up human capital to pursue more productive and 
meaningful pursuits, they say. In other sectors, the impact will be similarly broad. Autonomous 
cars could fundamentally restructure transportation infrastructure, reduce traffic accidents and 
associated congestion. AI could help drive renewable energy generation and improve demand-
side efficiencies, leading to massive growth in renewable power. AI could personalize education 
service delivery and produce tools that allow for life-long learning. AI’s potential is both wide 
and deep and only beginning to be realized. 
 
Given AI’s rapid advance and associated consequences, there is a need for modeling efforts that 
allow us to explore AI’s development and the associated impacts. The purpose of this paper is to 
document a modeling effort to build a quantitative forecast of artificial intelligence within the 
International Futures integrated assessment platform, housed at the Frederick S. Pardee Center 
for International Futures. While no modeling effort can fully capture the diverse impacts of the 
AI revolution, the integrated nature of the IFs system leaves it uniquely placed to model AI and 
explore the forward impacts. The AI representation is designed to be uniquely customizable 
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within IFs allowing users to calibrate the representation based on their own conceptions of how 
the field is progressing.  
 
We begin with consideration of some of the drivers of artificial intelligence, in particular: 
hardware and software development, the rise of Big Data and cloud computing, information and 
communication technology penetration rates, and growing investment. We discuss the 
construction of the indices and initial model results, and then suggest some potential sectors to 
explore the impact of AI within the IFs framework. In particular we highlight the potential 
impact on economic productivity, labor, and global trade patterns, particularly in the context of a 
potential movement towards localized production coupled and renewable energy generation. 
 

Conceptualizing the Field of Artificial Intelligence 
 

Artificial intelligence refers generally to the development of machines and autonomous agents 
able to perform tasks normally requiring human-level intelligence. The field of AI was formally 
identified in the 1950s, and subsequent development was uneven, punctuated by prolonged 
periods of reduced attention and funding. Over the past five to ten years there has been renewed 
interest, particularly from commercial entities, coupled with rapid investment in AI and AI-
related technologies. By one estimate, in 2015 technology companies spent close to $8.5 billion 
on deals and investments in AI, four times as much as 2010 (Economist, 2016). In 2014 and 
2015 alone, eight global technology firms (including major firms like Google and Microsoft) 
made 26 acquisitions of start-ups producing AI technologies for an estimated $5 billion (Chen et 
al., 2016). In February 2017 Ford motor company announced it is to invest $1 billion into 
technologies to promote research on self-driving cars (Isaac & Boudette, 2017). These same 
technology giants and industry investors are currently engaged in a fierce competition for talent 
to develop an AI platform that will become industry standard, allowing that company or set of 
companies to control development for years to come.  
 
The field of AI is changing rapidly; today it is something of a “Wild Wild West” for both 
research and investment. The 2016 Association for the Advancement of Artificial Intelligence 
Conference, one of the largest, accepted submissions to over 30 sub-disciplines of artificial 
intelligence. Between 2012 and 2015, the Wall Street Journal estimated that close to 170 startups 
opened in Silicon Valley focused on AI (Waters, 2015). To help conceptualize such a large and 
varied field, we have drawn on multiple threads of research to build a representation in IFs that 
proceeds along three major categories or typologies: narrow, general, and super AI.   
 

Major AI Typologies 
 

Narrow (weak) AI: refers to specialized systems designed to perform only one task, such as 
speech and image recognition, or machine translation. Almost all recent progress in the field is 
happening within the confines of the narrow AI. Examples of narrow AI include: Apple iPhone’s 
intelligent personal assistant Siri, Alexa from Amazon echo, Google’s automated translation 
feature, video game AI, and automated customer support. Narrow AI’s rapid growth and 
development is being driven by improving technology, rising investment, and a growing 
recognition of substantial commercial and social benefits accruing from these technologies. 
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General (strong) AI: Seeks to create a single system that exhibits general human intelligence 
across any cognitive area including language, perception, reasoning, creativity, and planning. 
Constructing machines with general AI is extremely complex and scientists have yet to do it. 
While the development of General AI may have been one of the original goals of the AI 
movement, there is a large amount of uncertainty around when General AI will emerge. Most 
research today is not focused on General AI and there is no comprehensive roadmap toward such 
an outcome (Stanford University, 2015). 
 

Superintelligent AI: AI superintelligence refers to an intellect “any intellect that greatly exceeds 
the cognitive performance of humans in virtually all domains of interest” (Bostrom, 2014:26). 
This broad definition does not classify what form superintelligence could take, whether a 
network of computers, a robot, or something else entirely. It also treats superintelligence as a 
monolithic entity, when in fact it may be possible to create machines with “superabilities,” which 
we currently lack the ability to define and measure (Hernández Orallo, 2017:24). Researchers 
have suggested that the advent of general AI will create a positive feedback loop in both research 
and investment, leading to superintelligent machines.  
 

A Survey of Drivers of Artificial Intelligence 
 
To help understand and identify trends in AI development a survey of the key conceptual and 
technical drivers is important. Important drivers include: hardware and software development, 
commercial investment, Big Data and cloud computing, and levels of information and 
communication technology (ICT) penetration. We recognize this list may not be comprehensive 
nor exhaustive, but believe that these areas represent important proximate drivers of AI and 
important conceptual building blocks of the AI forecasting capability in IFs. 
 

Hardware Development 
 
AI development relies on two major technological thrusts: hardware and software. Hardware, or 
computing and processing power, has traditionally been conceived of in relation to Moore’s 
Law. Named for Intel co-founder Gordon Moore, it refers to his observation in 1965 that the 
number of transistors on a computing microchip had doubled every year since their intervention, 
and was forecast to continue along that trajectory (Figure 2). 
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Computing power has increased exponentially 
since the law was first proposed in 1965. For 
instance, current microprocessors are almost four 
million times more powerful than the first 
microchip processors introduced in the early 
1970s (Schatsky et al, 2014). 
 
Nevertheless, there are indications we may be 
reaching the technological limits of Moore’s 
Law. Raw computing power (as measured by 
transistors per chip) is reaching something of an 
inflection, leading many to speculate we are 
approaching the “limits of Moore’s Law” 
(Simonite, 2016; The Economist, 2016a). The 
number of transistors per chip has been 
plateauing since the early 2000’s (Figure 3). 
  
By Intel’s own estimates, the number of 
transistors on a microchip may only continue 
doubling over the next five years (Bourzac, 
2016).  

 
 

 
Figure 3. Computer Processing Speeds 

Source: The Economist, 2016. 

Figure 2. Number of Transistor Components per Chip 

Source: Moore, 1965 
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Chip manufacturers are approaching the theoretical limits of space and physics that makes 
pushing Moore’s Law further both technologically challenging and cost prohibitive. Moore’s 
Law became a self-fulfilling prophecy because Intel made it so. They pushed investment and 
catalyzed innovation to produce more power and faster processing (The Economist, 2016). In the 
face of increasingly high costs and complex design considerations, processing speeds are 
unlikely to continue to grow in the same fashion. 
 
While important, Moore’s Law represents only one of several assessments of computing power. 
Other industry measurements capture different aspects of raw hardware power. One 
measurement, Floating Point Operations per Second (FLOPS), is a raw estimate of the number of 
calculations a computer performs per second, an indication of computational performance. 
Another, Instructions Per Second (IPS), estimates how rapidly computers can respond to specific 
instructions and inputs, providing an indication of processing speed. 
 
The literature has attempted to estimate (in rough terms) global computing capacity using IPS 
and FLOPS as standard measurements. Hilbert and Lopez (2012) using a variety of data from 
1986 and 2007, estimated global computing capacity to be around 2 x 1020 IPS. They also 
estimate growth rates for general purpose computing hardware to have been around 61 percent 
over the same timeline. In another longitudinal study, Nordhaus (2001) calculated that 
computing performance has improved at an average rate of 55 percent annually since 1940, with 
variation by decade. A study from Oxford University in 2008 estimated that since 1940, MIPS/$ 
has grown by a factor of ten roughly every 5.6 years, while FLOPS/$ has grown by a factor of 
ten close to every 8 years (Sandberg and Bostrom, 2008). 
 
Building on this literature, in 2015, contributors to AI Impacts, an open-source research project 
based at the Oxford Futures Institute, estimated global computing capacity to be something in the 
region of 2 x 1020 – 1.5 x 1021 FLOPS. But how does this power compare with the human brain? 
Plausible estimates of human brain computing power ranged from 1018, 1022, and 1025 FLOPS 
(Sandberg & Bostrom 2008; AI Impacts, 2015). In his 2005 book, Google’s Ray Kurzweil 
claimed the human brain operated at the level of 1016 FLOPS. By these estimates, global 
hardware processing power has surpassed the human brain. Already, some of the most powerful 
supercomputers can process data in greater volumes and with much more speed than the human 
brain. Yet the human brain remains vastly more efficient, requiring only enough energy to power 
a dim light bulb, while the energy required for the best supercomputers could power 10,000 light 
bulbs (Fischetti, 2011). 
 

Software Capabilities 
 
AI development is being catalyzed by more than just more powerful hardware. Improved 
software has facilitated the development of more complex and powerful algorithms, an essential 
component of many new AI technologies. Deep learning, software capable of mimicking the 
brain’s neural network, can learn and train itself to detect patterns through exposure to data (Hof, 
2013). Deep Learning technologies diverge from classic approaches to AI, which typically relied 
on a pre-programmed set of rules defining what machines “can” and “cannot do.” Deep Learning 
is not constrained by established rules and has the capability to “learn”, but it requires vast 
amounts of data for learning and often breaks down if there are frequent shifts in data patterns 
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(Hawkins and Dubinsky, 2016).  According to market research, revenue from software using 
deep learning technology could reach over $10 billion by the mid 2020’s, up from just over $100 
million in 2015 (Tractica, 2016). Deep Learning technology has enjoyed a renaissance alongside 
the growth of “Big Data,” powered by the accessibility and penetration of the internet, mobile 
devices, and social media, among other things. The vast amount of data being produced in these 
areas helps improve the quality of machine learning algorithms, which can be “trained” through 
exposure to varied datasets (Guszcza et al., 2014). 
 
 

 
Figure 4. Forecasted Revenue for Software Built Using Deep Learning 

Source: Tractica, 2016 

 
While deep learning places a premium on data mining and pattern recognition, another emerging 
approach, Reinforcement Learning, moves toward decision-making and away from pattern 
recognition (Knight, 2017). Under this approach, AI machines “learn by doing;” that is they 
attempt to perform a specific task hundreds or even thousands of times. The majority of attempts 
result in failure, yet with each success, the machine slowly learns to favor behavior 
accompanying each successful attempt. Reinforcement Learning builds on behavioral principles 
outlined by psychologist Edward Thorndike in the early 1900’s. He designed an experiment that 
placed rats in enclosed boxes from which the only escape was by stepping on a lever that opened 
the box. Initially, the rats would only step on the lever by chance, but after repeated trials they 
began to associate the lever with an escape from the box, and the time spent in the box fell 
sharply (Knight, 2017). In March 2016 AlphaGo, a Google program trained using reinforcement 
learning, defeated Lee Sedol, one of the world’s best Go players. This result was especially 
surprising because Go is an extremely complex game that cannot be reproduced by machines 
with conventional or simple rules-based programming. In past experts have estimated that a 
machine wouldn’t be able to defeat a human Go player for another decade or so (Knight, 2017).  
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Cloud Computing  
 
Alongside Big Data, the internet and cloud computing (internet-based computing services) are 
important catalysts of AI development. They have helped make vast amounts of data available to 
any device connected to the internet and they allow for crowdsourcing and collaboration that can 
improve AI systems (Schatsky et al., 2014). Cloud computing is fundamentally restructuring the 
licensing and delivery of software, operating platforms, and IT infrastructure. It is catalyzing a 
movement towards providing software resources as on-demand services (Diamandi et al., 2011).  
 
 
Table 1. Cloud Computing Services 

Computing Service Description Example Products 
Infrastructure as a Service (IaaS) Provides computing capabilities, 

storage and network infrastructure. 
Amazon EC2 and S3 Services 
Xdrive 

Platform as a Service  

(PaaS) 

Provide platforms that enable 
application design, development, 
and delivery to customers. 

Microsoft Windows Azure 
Salesforce.com platform 

Software as a Service 

 (SaaS) 

Software applications are delivered 
directly to customers and end users.  

Google Docs 
Microsoft Office 365 
Zoho 

Source: Diamandi et al, 2011.  

 
Cloud computing is still largely in its nascent stages, but the technology is evolving in parallel 
with many narrow AI applications. Microsoft’s website now offers many cognitive services 
through the cloud, including computer vision and language comprehension. Amazon Web 
Services has added data mining and predictive analytics tools as part of its cloud computing 
toolkit (Amazon, 2017). In 2015, telecommunications company Cisco released a white paper on 
the size and trajectory of global cloud computing capacity between 2015 and 2020. According to 
their estimates, global cloud IP traffic will grow at a compound annual growth rate (CAGR) of 
30 percent between 2015 and 2020 (Cisco, 2015). They forecast annual global cloud traffic to 
reach 14.1 zetabytes (ZB) (1.2 ZB per month), by 2020, up from 3.9 ZB in 2015.1 
 
Market spending on cloud computing services is projected to reach more than $200 billion by 
2020, up from an estimated $122 billion in 2017 (IDC, 2016). Approximately 90 percent of 
global enterprises will use some type of cloud-based technology by 2020 (EIU, 2016). Despite 
the forecasted growth, a 2016 study from the Economist Intelligence Unit found that cloud 
computing, measured by industry adoption rates, is really only just beginning. The study 
surveyed leaders from five major industries (banking, retail, manufacturing, healthcare, 
education), and found that an average of only 7 percent of respondents felt that cloud computing 
played a “pervasive role” (Economist Intelligence Unit, 2016:3). In addition to varied rates of 
adoption, concerns over privacy, security, and flexibility remain. Companies deciding to adopt 
one cloud platform may find it costly or difficult to transfer their information to another provider 
(Economist, 2015). Improved regulation that allows benefits companies and consumers to move 

                                                 
1 1 zetabyte is equal to 1021 bytes. A byte is a unit of digital information, traditionally consisting of 8 bits. 8 bits 
represents the number of bits required to encode and save a single character of text in a computer. 
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data between different providers may enhance adoption rates. The growth of the cloud, both in 
terms of data management and market size is undeniable, but important challenges remain. 
 

The Shifting Investment Landscape 
 
AI advancement has traditionally been the product of universities and corporate research and 
development labs (e.g. IBM). Over the last few years, Silicon Valley has moved major 
investments into AI. There is a growing appreciation and recognition of the social benefits and 
commercial value of narrow AI technologies, prompting interest from Silicon Valley and private 
start-ups. Major technology companies including Facebook, Google, and Microsoft have hired 
some of the best minds in AI and invested heavily (Albergotti, 2014; Regalado, 2014). One 
reason technology companies have been able to attract the top talent away from research 
universities is in addition to comfortable compensation packages, these companies are sitting on 
vast amounts of user generated data increasingly essential to AI development. This data is not 
publicly available nor can many research centers and universities compete with its size and 
breadth. 
 
Private investment in AI has grown commensurate with the results and attention. One market 
research firm estimated private funding for AI (excluding robotics) to have grown from $589 
million in 2012 to over $5 billion in 2016 (CB Insights, 2017). There may be as many as 2,600 
different companies operating in the AI sector as of 2016, with over 170 having taken off in 
Silicon Valley since 2014 (Byrnes, 2016). The robotics market alone could be worth close to 
$135 billion by 2019 (Waters & Bradshaw, 2016). 
 

 Information and Communication Technology Access 
 
Information and communication technology access is another important indicator of AI. ICT 
penetration rates, particularly mobile broadband, serve as an important baseline to justify 
investment into AI and give some indication of the technological depth of a society. Many AI 
applications over the near-term will rely on smart phones as a service delivery mechanism. The 
number of smart phones in the world is expected to grow, reaching over 6 billion by 2020 with 
much of the growth coming from the developing world. Today there are an estimated 3.2 billion 
(Ericsson, 2016) The 2016 annual report by the International Telecommunications Union (ITU) 
provides a current snapshot of global ICT connectivity:  
 

 Globally, 95% of the population lives in an area covered by a cellular network; 84% of 

the population lives in an area with a mobile broadband network (3G or above), but only 

67% of the global rural population has access to mobile broadband regularly. 

 An estimated 3.9 billion people are not using the internet regularly, roughly 53% of the 

total. Internet penetration rates in developed countries are up at around 81%, while in the 

developing world they average approximately 41%, but only 15% in the least developed 

countries 

 An estimated 1 billion households have internet access: 230 million in China, 60 million 

in India, and 20 million across the 48 least developed countries. 
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As we can see from the figures above, much of the developed world is covered by internet access 
and mobile broadband, but a general lack of access constrains the poorest parts of the world. 
 
Together, the preceding list comprises important proximate drivers of AI development. In 
addition, the spread of AI technologies for commercial and personal use will be contingent on 
policymaking and industry adoption. Transparent policymaking is necessary to define the rules 
of AI and its use, but also to justify adoption and investment. How rapidly the business industry 
can integrate emerging AI technologies into their work cycle will further hinder or hamper 
adoption. With these trends and important drivers in mind, we shift to thinking about 
“intelligence” and how we might evaluate or assess generally intelligent machines. 

Measuring and Evaluating Artificial Intelligence 
 
There is minimal doubt that Artificial Intelligence is a “successful” field; new technologies and 
applications are emerging regularly (Hernandez-Orallo, 2017:117). Almost all recent progress 
has been restricted to narrow AI sectors; the development of general AI machines remains a 
distant goal rather than an imminent reality. Scientists and developers in the field remain 
confident that general AI will be developed, though there is significant uncertainty as to the 
timeline. 
 
Evaluating AI requires some basic consensus around standard benchmarks of progress and an 
understanding of what qualifies as general intelligence, at least from a definitional perspective. 
As we will see, there exists a great many definitions of “intelligence,” a growing number of tests 
and evaluation techniques used to assess machine intelligence, and some dispute around how we 
can (or should) accurately measure general intelligence. 
 
Early researchers of AI were focused on developing generally applicable machines, that is those 
capable of solving a variety of problems otherwise requiring “intelligence” (Newell et al., 1959). 
Some researchers tried to design programs that would be capable of solving questions commonly 
found on human IQ tests, such as the ANALOGY program which sought to answer geometric-
analogy questions frequently found on intelligence tests (Evans, 1964). Ultimately however, the 
creation of generally intelligent machines was far more difficult than many predicted, leading to 
a stagnation in AI research in the 1960s and the 1970s. The pace of research also slowed as a 
result of what has become known as the “AI effect,” or the idea that as soon as AI successfully 
solves a problem, the technology is reduced to its basic elements by critics and thus is no longer 
considered intelligent (McCorduck, 2004). For instance, when Deep Blue beat chess champion 
Gary Kasparov in 1997, critics claimed that the machine resorted to brute force tactics, which 
were simply a function of computing power rather than a true demonstration of intelligence 
(McCorduck, 2004, p. 33). The result of the “AI effect” is that the standards for true machine 
intelligence keep retreating. These difficulties helped in part to shift the field toward the 
development of narrow technologies capable of achieving measurable and practical results 
(Hernández-Orallo, 2017:120). 
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Evaluating Narrow AI 
 

The growth of narrow AI technology means that most AI is now accessed according to a “task-
oriented evaluation,” (Hernández-Orallo, 2017: 135) that is, according to its relative performance 
along task-specific, measurable outcomes. Today all of the benchmarks along narrow the AI 
categories discussed below measure performance according the completion of a specific task:  
 

 the ability to translate text from one language to the other, or 

  identify a cat from a series of photos, or 

  accurately respond to specific questions from a human user 

Progress along these many different evaluations shows that AI is becoming more useful, but 
doesn’t necessary suggest that AI is becoming more intelligent. Measuring and evaluating 
artificial intelligence requires some classification and understanding of major technologies that 
are shaping the field. The AI field is diverse and rapidly expanding and resists simple 
classification. Pulling together various threads from a wide-range of research, we have identified 
six “categories” of AI technology generating new breakthroughs: computer vision, machine 
learning, natural language processing, robotics, the “Internet of Things,” and reasoning/decision-
making. These six include both foundational AI technologies as well as important technologies 
emanating from them. While items on this list are neither exhaustive nor exclusive (See Box 1), 
they provide a framework to begin building the representation of AI in IFs. 
 
 

Table 2. Technologies Comprising the Narrow AI Representation in IFs 

Type Definition Applications 

Computer Vision Ability of computers to identify objects, 
scenes, activities in images. 

Medical imaging, facial recognition, retail and 
sales. 

Machine Learning Ability of computers to improve 
performance through exposure to data 
without pre-programmed instructions. 

Any activity that generates substantial data. 
Examples include: fraud detection, inventory 
management, healthcare, oil & gas. 

Natural Language 

Processing 
Ability of computers to manipulate, write 
and process language, as well as interact 
with humans through language. 

Analyzing customer feedback, automating writing 
of repetitive information, identifying spam, 
information extraction and summarization. 

Robotics The branch of technology specializing in 
design and construction of robots.  

Unmanned aerial vehicles, cobots, consumer 
products and toys, select services, manufacturing  

Internet of 

Things/Optimization 
Networking of physical objects through the 
use of embedded sensors, actuators, and 
other devices that can collect or transmit 
information about the objects. Requires 
collecting data, networking that data, and 
then acting on the information. 

Two main applications: anomaly detection and 
optimization. Specific applications in energy 
supply and demand, insurance industry and 
optimization of premiums, healthcare, public 
sector management.  

Reasoning, 

Planning, & 

Decisionmaking 

This represents an area of AI research 
concerned with developing ability of 
machines to reason, plan, and develop 
decision-making capacity. We represent it 
as a general “spillover category” of 
machine reasoning, an essential element of 
general AI. 

Limited modern applications and development. 
Some basic reasoning technology has been used 
to assist in proving mathematical theorems. 
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Box 1. 

 
There are many sub-disciplines and areas of study within the AI field, many more than could be effectively 
captured in any modeling effort. The 2016 Association for Artificial Intelligence annual conference alone 
accepted submissions to over 30 different AI subfields. The six main categories of technology we have 
represented within narrow AI cover both foundational AI technologies (computer vision, machine learning, 
natural language processing, reasoning), as well as important technologies that are emanating from the field 
(robotics, internet of things). These areas are currently receiving significant attention, deep financial investment, 
and/or are necessary for advancing the spectrum towards general AI.  
 
We recognize these categories are neither exclusive nor exhaustive. To outline the diversity of research and 
development currently happening within the field, Table 3 below depicts other important areas of AI 
technological development. Included in this list are the main disciplines within AI Journal, one of the leading 

publications in the field (Hernandez-Orallo, 2017:148). 
 
Table 3 Major Areas of AI Research 

AI Subfield Definition 

Crowdsourcing and 

Human Computation 

Algorithms that allow autonomous systems to work collaboratively with 
other systems and humans. 

Algorithmic Game 

Theory 

Research focused around the economic and social computing dimensions of 
AI. 

Neuromorphic 

Computing 

Mimic biological neural networks to improve hardware efficiency and 
robustness of computing systems. 

Automated (Deductive 

Reasoning) 

Area of computer science dedicated to understanding different aspects of 
reasoning to produce computers that are capable of reasoning completely. 

Constraint Processing Refers to the process of finding solutions amidst a set of constraints that 
impose conditions that certain variables must satisfy.  

Knowledge 

Representation 

Representing real world information in forms that a computer system can 
use to solve complex tasks. 

Multi-agent Systems Computer system composed of multiple, interacting, intelligent agents 
within one environment. 

Planning and Theories of 

Action 

Developing machines capable of “understanding what to do next” in the 
context of unpredictable and dynamic environments, often in real-time. 

Commonsense Reasoning Simulating human ability to make presumptions, inferences, and 
understanding about ordinary situations that they encounter on a day to day 
basis. 

Reasoning Under 

Uncertainty 

Concerned with the development of systems capable of reasoning under 
uncertainty; Estimate uncertain representations of the world in ways 
machines can “learn from.” 

 

 
 

Benchmarking Progress in Narrow AI 
 
In this section, we outline recent progress along the categories of narrow technology outlined 
above. Given the lack of standardized data on AI technology and development across time, these 
benchmarks are pulled from a variety of sources, including (but not limited to), media reports, 
market research estimates, government analyses, journal articles, and other independent analyses 
of the field. Table 4 provides a summary of progress along the identified categories of narrow AI 
technology and an initial AI index score (from 0-10) for each estimated by the authors. A 
justification for the initial score is elaborated in text below the table. 
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Table 4. Benchmarking Progress in Narrow AI Technologies 

Technology Performance Benchmarks 2015 

Index 

Score 

Machine 

Learning 
 1997: IBM Deep Blue defeats Gary Kasparov, a Grandmaster, in a game of 

Chess. 

 2011: IBM Watson defeats Jeopardy! champion. In the lead up to the 
contest, between December 2007 and January 2010, the precision of 
Watson’s responses more than doubled. Precision measures the percentage 
of questions the system gets right relative to those it chooses to answer. In 
December of 2007, Watson answered 100 percent of Jeopardy! style 
questions with only 30 percent accuracy. By May of 2008, accuracy of 
response improved to 46 percent, and by August of 2008 it was close to 53 
percent. A year later in October of 2009 accuracy (with 100 percent of 
questions answered) hovered around 67 percent, twice the level in 2007. 

 2008-2012: NIST Machine Translation Scores. Chinese to English 

translation accuracy (as compared with a human translation) improved 28-

34% between 2008-2012. Arabic to English accuracy scores improved from 

41% to 45%. Less widely spoken languages scored less well: Dari to 

English 13% (2012), Farsi to English 19% (2012), Korean to English 13.6% 

(2012). 

 2013: First AI software passes the Captcha test. Captcha is a commonly 

used authentication test designed to distinguish humans and computers. 

Captcha is considered broken if a computer is able to solve it one percent of 

the time; this AI software solved it 90 percent of the time. 

3 

Computer 

Vision 
 2010-2015: Stanford AI ImageNet competition. Image classification has 

improved by a factor of 4 over 5 years. Error rates fell from 28.2% to 6.7% 

over that time period. 

 In the same competition, object localization error rates fell from 45% in 

2011 to 11% in 2015. 

 2012: Google releases the “Cat Paper.” Produced a machine capable of 
learning from unlabeled data to correctly identify photos containing a cat. 

 2014: Facebook’s “DeepFace” team publishes results that claim its facial 
recognition software recognizes faces with 97% accuracy. 

 2015: Microsoft image recognition algorithms published an error rate of 

4.94%, surpassing the human error threshold of 5.1% and down from error 

rates of 20-30% in the early 2000’s. 

3 

Natural 

Language 

Processing 

 2012- 2014: Siri’s ability to answer questions correctly improved from an 

estimated 75% to 82%. Over the same time period, Google Now response 

accuracy improved from 61% to 84%. Siri’s ability to interpret a question 
when heard correctly improved from 88% to 96%. Google Now similarly 

improved from 81% to 93%. 

 2015: Baidu released its DeepSpeech 2 program that can recognize English 

and Mandarin better than humans and achieves a character error rate of 

5.81%. Represents a reduction in error rates by 43% relative to the first 

generation of the software. 

 2016: Microsoft switchboard word transcription error rates have dropped 

from between 20-30% around 2000, to a reported 5.9% in 2016. 

2 

Robotics  1942: Isaac Asimov publishes the Three Laws of Robotics.  1 
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 1954: Patent for “Unimate,” the first industrial robot filed. Unimate worked 
on a General Motors assembly beginning in 1961. 

 1969: Robot vision for mobile robot guidance first demonstrated at Stanford 

 1970: Hitachi develops the first robot capable of assembling objects from 

assembly plan drawings.  

 1980: First use of machine vision in robotics demonstrated at the University 

of Rhode Island in the U.S. 

 1990: Manufacturers begin to implement network capabilities among 

robots. 

 2002: Reis Robotics patents technology permitting among the first direct 

interactions between humans and robots. Robotics industry crosses $1 

billion.  

 2003: Mars Rover first deployed heading to the planet Mars. Mars Rover 

missions continue through the present day.  

 2004: First DARPA Grand Challenge. Goal: design an autonomous car 

capable of completing 150 mile route through the Mojave Desert in the U.S. 

No cars completed the route; an entry from Carnegie Mellon went the 

farthest, completing roughly 7.3 miles. 

 2005: Second DARPA Grand challenge. Design a driverless car capable of 

completing a 132 mile off-road course in California. Of the 23 finalists, 5 

vehicles successfully completed the course, the fastest in just under seven 

hours. 

 2007: Third DARPA Grand Challenge. Design a self-driving car capable of 

completing an urban, 60-mile course in less than six hours. Required 

vehicles that could obey traffic laws and make decisions in real time. Six 

teams successfully completed the course, the fastest in just over four hours. 

 2015: Carmaker Tesla releases its first generation Autopilot technology, 

part of its suite of self-driving technology. Autopilot allows Tesla to 

automatically steer within lanes, change lanes, manage speed, and parallel 

park on command. 

 2015: The University of Michigan opens MCity, a testing center for 

autonomous vehicles. Represents the first major collaboration between 

private industry, government and academia on the development of 

autonomous vehicles. 

 2015: BCG estimates global robotics manufacturing installations to grow 

10% through 2025, reaching an estimated 5 million globally. Yet even by 

2025, robotics may only account for 25% of all manufacturing tasks 

globally. 

Internet of 

Things 
 1990: There are an estimated 100,000 internet hosts across the worldwide 

web. 

 2000: More than 200 million devices connected to the IoT 

 2012: A botnet known as “Carnabot” performed an internet census and 

counted approximately 1.3 billion devices connected to the worldwide web. 

 2014: The number of devices communicating with one another surpassed 

the number of people communicating with one another. 

 2015: over 1.4 billion smart phones were shipped and by 2020 we will 

have 6.1 billion smartphone users. 

 2020: There could be anywhere from 20-50 billion devices connected to the 

IoT 

2 
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Reasoning, 

Planning, and 

Decisionmaking 

 Spillover category designed to capture progress towards reasoning, 

planning, and decisionmaking, key elements of general intelligence. 

 There are very minimal current applications in this technology. Automated 

Reasoning, for instance, has been used in the formal verification of 

mathematical proofs and the formalization of mathematics. 

1 

 
 

Thinking About Measuring General AI 
 

There are many, varying, conceptual measurements for general artificial intelligence (AGI). One 
example is the “coffee test,” under which a machine should be able to enter an ordinary and 
unfamiliar human home, find the kitchen, and make a cup of coffee (Moon, 2007). Along these 
lines, others have proposed that a generally intelligent machine should be able to enroll, take 
classes, and obtain a degree like many other college students (Goertzel, 2012). Nils Nilsson, a 
Professor of AI at Stanford, has taken the definition a step further, proposing an “employment 
test,” whereby a truly intelligent machine should be able to complete almost all of the ordinary 
tasks humans regularly complete at their place of employment (Muehlhauser, 2013).  
 
These definitions of AGI have similar underlying themes: they require that machines be able to 
respond to different tasks under varying conditions. These differing tests help us arrive at a 
working definition of general-purpose AI systems, proposed by Hernandez-Orallo, (2017:146): 
 
AGI must do a range of tasks it has never seen and not prepared for beforehand. 

 

Having defined AGI, we must now consider measurement techniques. The Turing Test, first 
proposed by English Mathematician Alan Turing in 1950 has evolved into a simple test of 
intelligence. The Turing Test measures the ability of machines to exhibit intelligent behavior 
indistinguishable from that of humans. If a machine can fool a human into thinking it is human, 
then that machine has passed the Turing Test. Some have identified it as “a simple test of 
intelligence” (French, 2000:115), or a goal of AI (Ginsberg, 1993:9). An example of the 
enduring appeal of the Turing Test, The Loebner Prize for Artificial Intelligence, offers $100,000 
to the chatterbot deemed to be most human-like according to a panel of judges. The prize has 
been offered annually since 1991. 
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Box 2. 

 
Some researchers of AI have proposed a suite of tests for which to analyze general intelligence. Adams et al 
(2012) identified “high-level competency areas” that machines would have to depict across a number of 
scenarios, including: video-game learning, preschool learning, reading comprehension story comprehension, and 
the Wozniak test (walk into a home and make a cup of coffee) (synthesized from Hernandez-Orallo, 2017:148). 
 
Core competency areas as identified by Adams et al (2012) and reproduced in Hernandez-Orallo (2017) are seen 
in the table below: 
 
Table 5. Core Competencies of General AI 

Perception Memory 

Attention Social interaction 

Planning Motivation 

Actuation Reasoning 

Communication Learning 

Emotion Modelling self/other 

Building/creation Use of quantities 

  

 
While such a set of complex assessments may never be possible across all of the identified competencies or 
scenarios, comprehensive analysis could include some combination of these different evaluation strategies. 

 
 
More recent research has argued against the Turing Test as a sufficient measure for general 
intelligence. Hernandez-Orallo (2017:129-130), summarizes its shortcomings succinctly. He 
points out that many non-intelligent machines can be trained and designed to fool judges, 
without necessarily exhibiting true intelligence. The results of the Turing can differ dramatically 
based on indications, protocols, personalities, and intelligence of the people involved, both the 
judges and participants. Finally, the Turing Test asks machines to imitate humans, which raises 
questions about how representative the imitation is of the entire human race. 
 
Instead of focusing on task-specific evaluations, AGI evaluation should move towards “feature-
oriented evaluation.” Such an evaluation would be based on a profile of behavioral features and 
personality traits of the machine, rather than its ability to perform a discrete task (Hernandez-
Orallo, 2016:146). This type of evaluation builds on performance along narrow task areas and 
towards a maximalist view of general intelligence. The type and style of this evaluation is 
debated and ill-defined. Some have proposed the idea of a machine cognitive decathlon 
(Hernández Orallo, 2017; Vere, 1992), or a test of mental flexibility. Feature-oriented evaluation 
is complicated by non-specific questions around defining and measuring “personality.” Feature-
oriented evaluations remains a nascent idea and topic, combining both measurements and 
evaluations of cognitive ability and personality (Hernandez-Orallo, 2017: 150), but it surely must 
be the direction the field moves toward in an assessment of AGI. 
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International Futures: Representing AI 
 

We now turn to a discussion of the construction and 
conceptualization of the AI indices in IFs. 
Understanding the IFs platform is important for 
understanding how the AI representation is integrated 
within the tool and how it could be used to model 
impacts of AI. International Futures (IFs) is an open-
source, quantitative modeling tool for thinking about 
long-term futures. Building on 3,600 historical data 
series, IFs helps users understand historical patterns, 
explore the current path of development and the 
trajectory we appear to be on (or Current Path), and 
shape thinking about long-term futures. To do this, IFs 
leverages relationships across hundreds of variables 
from twelve dynamic, interconnected systems of human 
development. Figure 5 depicts the major sub-modules 
of the IFs system. The linkages shown are illustrative 
rather than comprehensive, each link is comprised of 
hundreds of variables. The IFs Current Path represents 
expectations for how development will unfold across 
each of these systems absent significant alteration or 
intervention, (think drastic policy change, man-made or 
natural disasters, conflict, or technological 
discontinuities). The Current Path provides a necessary 
reference point for alternative scenario analysis. It is 
itself a dynamic forecast, driven by the variables and 
relationships built into the model. Many of the 
assumptions in the model can be modified by users to 
better reflect their own understanding of how these 
systems are developing and unfolding across time. 
 
 
 

AI Variables in IFs 
 
The AI forecasting capability in IFs is a set of indices that estimates and forecasts global 
development of artificial intelligence. At present it does not contain forward linkages, a task we 
discuss in later sections of this paper. We have added several variables to the IFs platform to 
develop the modeling capability. The AI representation forecasts progress along narrow, general, 
and super artificial intelligence consistent with the conceptualization discussed earlier.  
 
The first variable added to IFs, AITASK, estimates and forecasts technological progress along 
each of the six areas of narrow AI we defined earlier in the paper: computer vision, machine 
learning, natural language processing, Internet of Things, robotics, and reasoning. AITASK is 

Figure 5. Representation of the IFs Model 
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represented as an index scaled from 0 to 10, where 0 represents no development, and 10 
represents full or complete development (see below for a more in depth discussion of our 
thinking along these lines). The index score along each of these narrow technologies is initialized 
in 2015 (IFs base year).  
 
The second variable added to IFs AITASKGR, represents the annual growth rate along each of 
these technologies, and saturates on approach to 10 for each. Each narrow technology grows at a 
different pace, estimated by the authors using inputs like: performance benchmarks, complexity 
of each technology, investment, and levels of research. AITASK Reasoning grows at the slowest 
pace of the AITASK indices. Progress along this index represents the movement towards 
machines capable of reasoning completely, complex decision-making, and provided with a sense 
of purpose and awareness of the world around them. Any movement from narrow to general AI 
in the IFs index is implicitly constrained by the pace of AITASK Reasoning, regardless of 
progress among the other areas of narrow AI development. 
 
Finally, we have also added AIMACHIQ, a variable which represents the movement from narrow 
AI to general and superintelligent AI. AIMACHIQ is scaled as an index representing machine IQ 
scores, roughly corresponding with human-level IQ scores. In the Current Path, the movement 
from narrow to general AI occurs when an index score of 10 is achieved for each of the narrow 
technologies denominated under AITASK, except for AITASK Reasoning, which is at 5. This 
transition is reflected on AIMACHIQ at an index score of around 60. At that point, the index 
forecasts general AI will have been achieved, though a score of 60 corresponds to machines with 
the equivalent of low-level human intelligence. AIMACHIQ then grows algorithmically as 
AITASK Reasoning continues to improve, saturating toward an index score of 200 as AITASK 

Reasoning reaches 10. An AIMACHIQ score of between 180 and 200 represents machine 
superintelligence, as this would correspond with some of the highest reported IQ scores among 
humans.2 
 
In addition to each of the variables, we have added parameters described in Table 6 to each of 
the AI variables. Parameters allow users to exogenously adjust the AI representation with 
maximum flexibility to bring the forecast in line with users own expectations of AI development. 

                                                 
2 Marilyn Vos Savant has the highest living recorded IQ today with a score of 228. Renowned physicist Stephen 
Hawking has a recorded IQ of around 160. 
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Table 6. AI Variables Added to IFs 

  Definition Scale 

Variables 

AITASK  Index measuring developmental progress of six areas of 
narrow AI technology: machine learning, computer vision, 
natural language processing, IoT, robotics, and machine 
reasoning. IFs forecasts development along each of these 
different narrow technologies. 

1-10  
 
(for each 
category of 
narrow 
technology) 

AITASKGR Represents estimated, differential, annual growth rates of 
each narrow technology. 

 

AIMACHIQ Index measuring the level and capacity of machine 
intelligence. Index scores correspond approximately to 
human-level IQ scores and intelligence. 

1-200 

Parameters 

aitaskm Multiplicative parameter allowing users to adjust the 
growth of task-specific technologies. Users can accelerate 
or slow this parameter by up to 1,000 percent in either 
direction. 

Set to 1 in the 
Current Path 

aimachiqm Multiplicative parameter allowing users to adjust the 
growth rate of general and superintelligent AI. Users can 
accelerate or slow this parameter by up to 1,000 percent in 
either direction. 

Set to 1 in the 
Current Path 

 

 
There is no comprehensive, standardized dataset or series of benchmarks measuring the growth 
of artificial intelligence from which we can draw. There is also much debate and controversy 
over the pace of development and uncertainty around what the future of the field could look like. 
With that uncertainty in mind, the next section outlines the thinking behind the indices and 
growth rates along the six categories of narrow AI technology. 
 

Initializing AITASK: Rapid Progress over the Past 5 Years  
 
Many of the notable performance benchmarks outlined in Table 4 have occurred recently. If we 
were constructing this AI forecast five to ten years ago each of these technologies would have 
been initialized with a score of one. New breakthroughs in Deep Learning technology, a 
foundational element of many of the technologies above, including computer vision, machine 
learning, and natural language processing, has been responsible for much of the progress. Deep 
Learning and artificial neural network technology has been around since the 1980s and 1990s, 
but operated largely at the fringes of main AI research.  
 
Today however, the results produced through Deep Learning have come about because 
researchers have the means to store, manipulate, and utilize the vast amount of data produced by 
an increasingly digital world. The result has been an explosion of successful technologies. 
Stanford’s ImageNet competition began in 2010. Apple iPhone’s automated assistant Siri was 
acquired in 2010 and first introduced as part of the iPhone product line in 2011, Google 
responded by releasing Google Now in 2012. Google Brain, the project at Google centered on 
Deep Learning, opened in 2012. According to a company spokesperson, in 2012 Google was 
working on two Deep Learning projects. Today it is working on over 1,000 (Parloff, 2016). In 
2016, Google overhauled Google Translate using artificial neural networks, showing significant 
results in both accuracy and fluency of translation. These improvements were the result of a 
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project that began in 2011. In 2013, Facebook hired Yann LeCun, a leading Deep Learning 
scientist, to run its new AI lab. In 2016 Microsoft consolidated much of its AI portfolio into an 
umbrella AI and Research Group, which brings together more than 5,000 computer scientists 
working on AI-based projects (Microsoft, 2016). According to CB Insights, a market analytics 
firm, in the second quarter of 2016 nearly 121 rounds of equity fundraising were held for AI-
based start-ups, compared with just 20 in 2011 (Parloff, 2016). 
 

Initializing AITASK: Understanding the Shortcomings of Today’s Technology 
 
Yet, despite some referring to the recent period as the “the Great AI Awakening,” (Lewis-kraus, 
2016), the functionality of AI remains very limited. As AI pioneer and Director of Baidu AI, 
Andrew Ng, points out, almost all AI technologies today operate on a simple premise: data input 
is used to generate a simple response (Ng, 2016). In this section we look at the current 
shortcomings of each AI technology to provide context for and justify the initial indices score. 
 
Machine Learning 

 

AITASK Machine Learning 2015 Index Score: 3 

 

New algorithms that improve both the accuracy and speed of machine learning have been fueled 
by new technologies like Deep Learning and Reinforcement Learning. Corresponding 
performance in task-specific activities reflects that improvement (reflected in Table 4). 
Additionally, the market for machine learning technology was estimated at around $613 million 
in 2015, forecast to grow to 3.7 billion by 2021 (MarketsandMarkets, 2016a), suggesting these 
improvements are catalyzing interest and funding. Yet many improvements have not necessarily 
been uniform. For instance, machine translation accuracy is much lower among less commonly 
spoken languages. In 2012, the accuracy of Korean-to-English translation or Farsi-to-English 
translation hovered between only 13 and 19 percent, while it had improved to over 35 percent for 
Arabic and Chinese translations. Machine learning technology today remains dependent on 
massive volumes of data to “train” machines. Humans must be involved in the production, 
manipulation, and management of the data. Examples of common applications of machine 
learning are listed in Table 7. Each involves a simple binary output and massive data input. 
While each is a simple task for a human, as we will see below, machines can be easily fooled. 
 
 
Table 7. Examples of Machine Learning. 

Input A Output B Application 

Picture Does the picture contain faces? (0,1) Photo tagging 

Loan application Will the user repay the loan (0,1) Finances 
Add and user information Will this user click on the ad? (0,1) Ad-based targeting 

 
  
A result of these benchmarks, we have initialized AITASK Machine Learning at 3 in 2015. A 
machine learning index score of 10 represents perfect machine learning capabilities. To achieve 
an index score of 10, machine learning would be capable of learning almost any task as well as a 
human, with the ability to produce complex, sophisticated output. Additionally, machine learning 
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approaching 10 would contain sophisticated algorithms such that it is capable of learning from 
far smaller volumes of data than today’s models. That technology might even be able to 
manipulate and absorb data without human input. 
 

Computer Vision 

 

AITASK Computer Vision 2015 Index Score: 3 

 
Another area which has seen rapid improvement in the last five years is computer vision. The AI 
ImageNet competition, hosted by Stanford, has reported significant improvement in image 
identification, localization, and object detection between 2011 and 2015 (see Table 4). The 
market for computer vision is estimated to grow from $5.7 billion in 2014 to over $48 billion in 
2022 (Tractica, 2016).  
 
But it still remains very easy to fool computers into seeing something that isn’t there, or 
misclassifying objects completely erroneously. Many of the tasks relating completed by 
computer vision are extremely basic for humans. There remain important differences between 
machine and human vision that scientists don’t fully understand and thus cannot build in a 
machine. Machines can still be easily fooled in ways that human vision wouldn’t be. A 2015 
paper found that it was quite easy to produce images that humans would immediately identify as 
gibberish, only for a computer to classify them as objects with 99 percent confidence (Nguyen et 
al., 2015). Another similar study found that changing images in ways almost imperceptible to 
humans caused machines to misclassify objects entirely, for instance classifying a lion as a 
library (Szegedy et al., 2013). More recently, researchers in France and Switzerland showed 
small, almost imperceptible changes to an image could cause computers to mistake a squirrel for 
a fox, or a coffee pot for a macaw (Moosavi-Dezfooli et al., 2016; Rutkin, 2017). 
 
These challenges stem from fundamental differences in the way that humans and computers 
learn to “see” images. Children in school learning to recognize numbers eventually learn to 
recognize common characteristics of each after seeing many different examples. Ultimately they 
come to recognize numbers even if the way the numbers are written is new to them. Computers 
learn to see by being fed millions of images of labeled data. It picks up the features that enable it 
to correctly identify the object of interest. But, machines, unlike humans, cannot see the whole 
picture. They learn from the pixels in a photo, while learning how tell different pixels apart. So, 
imperceptible changes in the pixel composition, alterations that stop short of changing the image 
in the photo, could fool the machine into thinking the photo is something it isn’t (Rutkin, 2017).     
 
Given the rapid progress in image and object identification, but accepting the significant 
limitations, we initialize AITASK Computer Vision at an index score of 3 in 2015. A computer 
vision index score of 10 would reflect computers with vision on par with humans, with the 
ability to distinguish, localize, differentiate without being easily fooled. Building machines with 
vision equivalent to that of a human also requires elements of reasoning to be able to identify, 
process, and understand the world they “see.” 
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Natural Language Processing 

 
AITASK Natural Language Processing 2015 Index Score: 2 

 
Natural language processing has improved both in terms of its ability to answer human generated 
inquiries and also its ability to decipher and translate between different human languages. 
Investment and attention have both increased; the market for natural language processing 
products is expected to grow from $7.6 billion in 2016 to $16 billion by 2021 
(MarketsandMarkets, 2016b). 
 
Arguably however, language remains one of the final frontiers of human intelligence. Machines 
capable of a full suite of natural language capabilities is still more of a distant dream than a 
short-term reality. Machines still don’t “understand” language. Their ability to produce accurate, 
automated translation from spoken word in real time is limited by challenges that humans 
navigate with ease. Individual sounds are often not pronounced in isolation, in fluent human 
conversation they come in a constant stream. Machines still have difficulty understanding 
nuanced vocabulary, children and elderly speakers, or competing with significant background 
noise (The Economist, 2017).  
 
Researchers are also interested in producing machines capable of speech generation and 
conversation. The use of artificial neural network technology has helped researchers develop 
machines capable of producing more fluent sounding speech, but speech generation represents a 
whole new set of complex challenges. For instance, prosody, the modulation of speed, pitch, and 
volume to convey meaning, is an important component of human speech and interaction, which 
computers lack. Developing computers able to place stress on the correct words or parts of a 
sentence to convey meaning is incredibly difficult, and likely only “50 percent solved” by one 
estimate (The Economist, 2017). Additionally, fully fluent conversation is built around shared 
knowledge and an understanding of the world, something that machines lack. In theory, 
conversation between humans and machines represents a series of linked steps: speech 
recognition, synthesis, analysis of syntax and semantics, understanding of context, and dialogue, 
as well as common-sense and practical real-world understanding. Scientists still do not fully 
understand how the human brain pulls all of these disparate threads together to generate 
conversation; doing so in machines is a long-term task (The Economist, 2017). 
 
NLP is initialized at an index score of “2” in 2015. Fully automated machine transcription and 
translation remains a distant dream. Language is often considered the defining frontier of human 
intelligence. The Winograd Schema challenge, designed specifically to test how well machines 
understand and interpret language, was first held in 2016. The best entry scored a 58 percent, a 
result described as a “bit better than random” (Ackerman, 2016).  According to some, machine 
transcription, translation, or language generation will never replace the benefits of understanding 
language and human-led translation. When people learn new words and phrase, they are not just 
learning the literal semantics or syntax of the individual words, they also learn cultural values 
and norms (Lewis-kraus, 2016). 
 
A score of 10 along the natural language processing index represents machines capable of fully 
automated transcription and translation with close to 95 percent accuracy (roughly human level). 
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A score of 10 represents machines capable of hearing, understanding, synthesizing, and 
generating language to participate in complex conversations on a variety of topics for which it 
has not necessarily been trained.   
 

Internet of Things 

 
AITASK Internet of Things 2015 Index Score: 2 

 
The growth of the Internet of Things has been fueled by rising internet connectivity and mobile 
technology penetration. Smart phones in particular are essential, as a service delivery and data 
collection mechanism and will remain one of the primary interfaces through which users interact 
with the IoT. The IoT has been and is forecast to continue growing exponentially, by some 
estimates there could be as many as 50 billion devices connected to the IoT by around 2020. 

 
Figure 6. Number of Devices Connected to the Internet of Things vs. Size of the Population 

Source: Howard, 2015 

 
Despite the sheer growth in the number of devices connected to the IoT, the technology is still 
very much in its infancy. The rules and norms that govern the use of and privacy around IoT-
generated data remain ill-defined and opaque. Maximizing the benefits of IoT data requires 
interoperability between different IoT systems, today the vast majority of these systems are not 
interoperable. Finally, most data generated by the IoT today is used for basic tasks like anomaly 
detection and control, rather than for service optimization or predictive analytics, it’s most useful 
function (Manyika et al, 2015.) 
 
For these reasons, the IoT index is initialized at 2 in 2015, but is forecast to grow rapidly given 
expected exponential growth in the number of connected devices. An index score of 10 
represents a world where IoT data is protected and privacy concerns assuaged. Data produced is 
harnessed and analyzed to maximize efficiency on a broad social level. Fully smart cities and 
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smart homes are the norm in most major developed urban areas. Automated transportation has 
become widespread not only as a result of the production of these cars, but also because cities are 
investing in the sensors and technology needed to produce the smart infrastructure that supports 
automated driving. Smart infrastructure could include sensors embedded in the roadway that 
manages the flow and speed of traffic, sensors at intersections to reduce accidents and 
congestion, and smart lanes capable of charging cars as they drive (Manyika et al., 2013). 
According to a common definition of “smart” technology, global spending on smart city 
technology could cumulatively reach $41 trillion over the next 20 years (Pattani, 2016).  
 
Robotics 

 

AITASK Robotics 2015 Index Score: 2 

 

Robots are already well-established in a number of fields, particularly manufacturing. According 
to a 2015 report by Boston Consulting Group, robots accomplish close to 10 percent of tasks in 
the manufacturing industry today. Between 2010 and 2015, industrial robotics sales increased by 
a compound growth rate of around 16 percent annually, by 2015 there were 254,000 industrial 
robots sold (International Federation of Robotics, 2016).  
 
The field of robotics is initialized at an index of 1 in 2015. This might seem surprising, given the 
large swaths of manufacturing and light industry jobs already replaced by robots (Frey et al., 
2016; Frey and Osborne, 2013; Schwab and Samans, 2016a). The functionality of most modern 
robots, however, remains limited. Robots today can perform a significant number of basic tasks 
that humans no longer want to do (particularly in manufacturing), or a few select tasks that 
humans cannot perform, (such as traversing the surface of Mars). The field is moving towards 
the creation of robots that are capable of working efficiently and effectively alongside humans. 
These so-called “cobots,” have proved difficult to make and account for roughly only 5 percent 
of total global sales (Hollinger, 2016). 
 
Robots cannot complete tasks they were not constructed specifically to undertake. In addition, 
robotics technology builds on other areas of narrow AI like computer vision, machine learning, 
and natural language processing. Robotics brings together both hardware and software, 
advancing the field of robotics requires improvements in both domains. Available market 
research suggests that investment is coming. One estimate placed the global robotics market at 
around $71 billion in 2015, growing to $135 billion by 2019 (Waters and Bradshaw, 2016). The 
size of the service robotics market alone could grow from around $9 billion in 2016, growing to 
$24 billion by 2024 (Zion Market Research, 2017). 
     
An index score of 10 would be a robot that can respond to and perform a wide-range of tasks for 
which it has not formally prepared or trained. A score of 10 may even represent a robot that can 
perform any general task as well as a human. This remains a distant goal. For instance, in 2016 
Amazon held a contest to design a robot capable of stocking shelves in its warehouse. A task that 
would be fairly simple with humans, the winning robot had an error rate of around 16 percent, 
and Amazon said they did not plan to make human workers redundant in spite of these results 
(Vincent, 2016). 
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Reasoning, Planning & Decision-making:  

 

AITASK Reasoning 2015 Index Score: 1 

 

This is initialized at 1 in 2015. Development along this index is a distal driver pushing narrow AI 
technology toward the general level. Along this index, as reasoning approaches a score of 5, we 
forecast low-level, basic general intelligent machines to begin to come into being. As the index 
moves towards 10, general AI is improving, becoming as intelligent and capable as the average 
human. A reasoning score of 10 corresponds to the advent of a generally intelligent machine on 
par with human capabilities in reasoning, planning, language, vision, and decision-making. At 
this point machine technology has a sense of purpose and understanding of the world around it. 
 

Preliminary Results and Discussion 
 
We begin by presenting the Current Path (or base case) results of the IFs AI representation and 
forecast. Figure 7 below shows the forecast of narrow AI technology along the six key 
technologies. The rate of development is calculated and estimated as a function of performance 
along task-specific competitions and evaluations, the estimated size of the market for each of 
these technologies and forecasted growth of that market, as well as (where available) estimates 
of academic publications in each of these domains. The Internet of Things reaches an index score 
of 9 first, around 2038. Computer vision also proceeds rapidly, reaching an index score of 
between 9 and 10 around 2040. Robotics and natural language processing are slower-moving, 
and do not reach a score of 9 or 10 until around 2050.  
 
 

 
Figure 7. Narrow AI Forecast from IFs v. 7.29 IP 2 
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Under this approach, the movement from narrow to general artificial intelligence is conceived of 
from a “bottom-up” perspective. Along this line of thinking, the emergence of a generally 
intelligent machine must be developed from and build on existing narrow technologies. AGI 
researchers have expressed support for this approach (Harnad, 1990), and from our perspective 
this is conceivably the only way that AGI is likely to emerge. Progress along each of these 
technologies proceeds at differential rates, and general AI will not emerge until these 
technologies have reached advanced levels and become more integrated. Moreover, progression 
towards general AI is constrained by the movement of AITASK Reasoning, which is both the 
least developed and slowest moving of each of the narrow technologies. General intelligence is 
achieved when the reasoning index reaches a score of 5, which corresponds with a machine IQ 
score of between 55 and 60, or that of a human with very low intelligence. Figure 8 shows the 
Current Path forecast of AIMACHIQ. The Current Path suggests that a generally intelligent 
machine could be developed as early as 2040, though such a machine would have the 
intelligence equivalent to that of a “low-intelligence” human. AIMACHIQ suggests that a 
generally intelligent machine with average level human intelligence (generally considered an IQ 
score between 90 and 110) could more likely be achieved between 2046 and 2050.  
 
From there, AIMACHIQ is forecast to grow, in line with improvements in the capability of 
general artificial intelligence. AI researchers have suggested that AI superintelligence will come 
about from positive feedback loops brought on by the invention of AGI (Bostrom, 1998). 
AIMACHIQ approaches a machine IQ score of 144, the equivalent of a high-intelligence score 
on the human IQ index by between 2055 and 2057. AIMACHIQ begins to approach super-
human IQ (around 180, which only a handful of known humans have ever achieved) by 2090, 
suggesting that superintelligent AI could be achieved (at the earliest) near the end of the current 
century. 
 
 

 
Figure 8. AI Machine IQ Base Case Forecast from IFs v. 7.29 IP 2 
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We fully acknowledge the vast amount of uncertainty surrounding the development of artificial 
intelligence and the variability around a potential timeline. No comprehensive roadmap for 
general AI exists. The best available estimates of when we may see AGI come from expert 
surveys from the field. These provide important context for the IFs Current Path forecast.  
 
The results from a number of studies using the Delphi Technique3 on the future of AGI are 

depicted below in Table 8. The majority of respondents felt there is a 50 percent chance of AGI 

between 2040 and 2050, and a 90 percent chance of AGI on or after 2075. Notably, in one 

survey close to 2 percent of respondents felt that AGI would never be achieved. 

 

Table 8. Literature Survey on Timeline for General AI Development 

Study Details Results 

Kurzweil (2005) In his book the Singularity noted 
futurist Ray Kurzweil (now 
Google Director of AI) laid out 
his forecast for the development 
of general AI 

General AI will be present around the year 2045  

Baum et al., 

(2011) 

Assessment of expert opinion 
from participants at the AG-09 
conference 

The consensus was that a large portion of the AI 
community believed AGI is possible around the middle 
of the current century. 

Bostrom & 

Sandberg, 

(2011) 

Surveyed 35 participants at a 
human level intelligence 
conference in 2011 

Median results: 
 
10% chance of AGI: 2028 
50% chance of AGI: 2050 
90% chance of AGI: 2150 
 

Barrat & 

Goertzel (2011) 

Surveyed participants at AG-11 
conference hosted by Google 

Results: 
 
42% of respondents: 2030 
25% of respondents: 2050 
20% of respondents: 2100 
10% of respondents after 2100 
2%: never 
 

Muller and 

Bostrom, (2014) 

Electronic survey to hundreds of 
AI experts and researchers  

Median results: 
 
10% chance of AGI: 2022 
50% chance of AGI: 2040 
90% chance of AGI: 2075 
 

 
 
In addition, Mueller & Bostrom (2014) also asked participants when they felt we were likely to 
see the transition from general intelligence to artificial superintelligence. The responses indicated 
a 10 percent likelihood that the transition could occur within 2 years of the development of AGI 
and a 75 percent likelihood within 30 years of AGI. The IFs forecast is generally in line with 
these expert expectations. 

                                                 
3A method of group decision-making and forecasting that involves successively gathering the opinions of experts to 
come to a consensus-style answer. 
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We also created several scenarios around the future AI using the parameters described in table 6: 
Accelerated AI, and Stalled AI. Under the Accelerated AI scenario, AI proceeds at roughly 
double its pace relative to the Current Path. In this scenario, general AI emerges around 2030, 
and superintelligent AI technology is forecast to emerge midway through the current century. 
Under the Stalled AI scenario, the reverse is true and AI development proceeds at half the pace 
of the Current Path. General AI technology is not forecast to emerge before approximately 2051, 
and superintelligent AI is not achieved within this century. Even by close to 2100, available AI 
technology measures IQ scores of around 90, on par with average human intelligence. These 
scenarios help give a sense of the flexibility of the forecast within IFs and how the AI index can 
be manipulated to better match expectations. 
 
The scenarios displayed below underscore two fundamental uncertainties around the future of AI 
with respect to this forecasting exercise: i) how “high” it can ultimately go (that is, what level 
can AI achieve), and ii) how fast it will get there. The parameters added to IFs allow users to 
control both elements. The scenarios in Figure 9 both accelerate the pace of AI and affect its end 
level in 2100. Under Accelerated AI, the index reaches a score of close to 350 by 2100, whereas 
Stalled AI only achieves an index score of around 100 by 2100.  
 
 

 
Figure 9. Scenarios around AI development affecting both rate of growth and end level in 2100 from IFs v. 7.29 IP 2 

 
For the purposes of comparison and also to provide readers with a sense of the customization 
built into the AI indices, Figure 10 displays the results of scenarios that affect the rate of growth 
of AI technologies, but do not alter its end level by 2100. Both scenarios simulate a 50 percent 
increase or decrease in the rate of AI development relative to the Current Path. In Accelerated AI 

(2), AI converges towards an advanced machine IQ score of 180 more rapidly than in the Current 
Path. In this scenario we expect to see general AI emerge between 2035 and 2038, and 
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superintelligent machines to come into being around mid-century. After 2050 AI technology 
growth slows as it converges towards a fixed level of superintelligence. In a similar pattern, 
Stalled AI (2) slows AI’s advance by 50 percent relative to the Current Path. In this scenario AI 
Machine IQ only begins to approach superintelligence by end of century (approaching an index 
score of 150), but does not approach the maximum level of capability by the end of the horizon. 
General AI alone doesn’t emerge until mid-2060.  
 
 

 
Figure 10. Scenarios around AI development affecting only the rate of growth or development to 2100 from IFs 7.29 IP v 4 

 

International Futures: Exploring the Impacts of Artificial 

Intelligence 
 
As we have expressed throughout this report, AI will have deep impacts on many areas of human 
development. The utility of this quantitative forecast of AI development will be significantly 
enhanced by connecting the AI representation to other areas of the IFs model that would allow us 
to explore its impact at multiple levels over both the medium and long-term. The fact that IFs is 
integrated across so many different human development systems leaves it uniquely placed among 
other modeling efforts to capture the deep and wide-ranging impact of AI. Connecting AI to 
other areas of the model would have to be done through a set of carefully calibrated elasticity’s 
that could be freely adjusted by users. We propose to capture AI’s impact by on three areas in 
particular: economic productivity, labor, and international trade through production localization. 
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 Economic Productivity 
 
A near universal consensus in the literature suggests AI will improve economic productivity, but 
analysis on the depth of impact varies widely. Productivity, an assessment of output based on a 
fixed number of inputs, is a benchmark for efficiency of production and technological progress 
(McGowan et al., 2015:21). Nobel Prize winning economist Paul Krugman pointed out that with 
respect to economic growth, “productivity isn’t everything, but in the long run it is almost 
everything” (Krugman, 1994:11). Fortunately, AI is poised to enhance productivity. 
 
A 2016 report by Accenture, a consulting firm, laid out three avenues through which AI could 
enhance economic activity. The first is through intelligent automation, wherein AI is able to 
automate complex physical tasks, such as retrieving items in a warehouse. Increasingly 
intelligent AI machines are anticipated to be able to adapt across different tasks and industries. 
The second way AI will improve technology is by enhancing labor and capital, by freeing labor 
to act more creatively, imaginatively, and freely. The third way AI could enhance productivity is 
the result of diffusion, whereby innovation catalyzed by AI moves through diverse sectors of the 
economy. For instance, driverless cars will not only fundamentally change how our automobiles 
work, they could entirely restructure the auto insurance industry, reduce traffic congestion, 
accidents, and associated hospital bills, and stimulate demand for smart infrastructure. The extent 
of the productivity increase in different sectors will be more closely tied to how susceptible each 
industry is to AI technologies and/or automation, rather than factors like the level of investment 
or the level of development of the country in question. 
 
Most analysis of AI and productivity today focuses on estimating the benefits to productivity 
over the next decade or so. In 2015 Bank of America Merrill Lynch estimated that robots and AI 
technologies could bring add an estimated $2 trillion to U.S. GDP in efficiency gains over the 
next ten years, driven by the adoption of autonomous cars and drones. By their estimation 
robotics alone could drive productivity gains of 30 percent in many industries (Ma et al., 2015). 
The latest report from Mckinsey Global Institute (2017) on labor and technology estimated that 
AI-driven automation could increase global productivity by 0.8 percent to 1.4 percent annually 
within the next few years. The same report by Accenture Consulting is even more optimistic, 
estimating that labor productivity be between 11 and 37 percent higher in a sample of OECD 
countries in 2035 as a result of AI (Table 9).  
 
Table 9. Forecasted Impacts of AI on Productivity in 2035 

Source: Accenture, 2016 

Country Percentage increase in 

Labor Productivity in 2035 

compared to Base 

Sweden 37% 
Finland 36% 
United States 35% 
United Kingdom 25% 
Belgium 17% 
Spain 11% 
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Fewer attempts have been made to measure productivity and automation using historical data. 
One attempt by two researchers at Uppsala University and the London School of Economics 
used data from 1993 to 2007 in seventeen advanced economies. Across that period, the density 
of robots in manufacturing centers increased 150 percent, and both total factor productivity and 
wages increased. They find that robots increased GDP and labor productivity by 0.37 and 0.36 
percentage points respectively. Although there is less research on automation and productivity 
using historical data, the argument for productivity gains from AI builds on a substantial body of 
evidence of productivity gains in developed economies resulting from the ICT boom in the 1990s 
and early 2000s. Research has identified positive productivity gains both within industries 
(Stiroh, 2002) and across countries and regions (Bloom et al., 2012; O’Mahony and Timmer, 
2009; Qiang, 2009). 
 
Nevertheless, with respect to productivity, AI may be facing some strong headwinds. According 
to figures published in August 2016, U.S. labor productivity levels declined for the third straight 
quarter last year (Azeez, 2016). This is symptomatic of broader trends in the U.S. economy: 
between 2000 and 2007 annual productivity grew at around 2.6 percent—between 2007 and 
2016, it grew only by one percent. In the 1990’s ICT gains helped U.S. productivity grow by 2.2 
percent per annum (Lam, 2017). This slowdown has not been restricted to just the United States, 
nor is it necessarily specific to certain industries or sectors (Foda, 2016). Even by 2013, average 
productivity was 2 percent below levels seen prior to the 2008- 2009 financial crisis across the 
OECD (McGowan et al., 2015). Declining productivity among advanced economies is a 
troubling phenomenon concerning to policymakers. A number of explanations have been put 
forth, including: i) aging populations and structural economic inefficiencies (Gordon, 2012), ii) 
labor reallocation challenges (Haltiwagner, 2011), iii) increasingly bureaucratic and unwieldy 
firms (Hamel & Zanini, 2016), and iv) slowing technology diffusion among firms and industries 
(McGowan et al., 2015).  
 
A simpler explanation may simply be that technology has simply complicated calculations of 
GDP growth and productivity. Mainstream platforms from the Economist to the World 
Economic Forum have recently catalogued issues with GDP as an indicator of economic growth. 
Mathematically, GDP represents the sum of all consumption, government spending and 
investment (plus exports minus imports). Governments commonly use GDP to set fixed growth 
targets. It gives a general picture of the health of a country’s economy. 
 
The attachment to GDP has led to measures like GDP per capita representing proxies for 
standard of living economic wellbeing. And yet, economists increasingly point out that GDP is a 
poor indicator of economic and social wellbeing (S. Thompson, 2016). It says little about 
inclusive growth, or how the gains from growth are distributed. It says nothing about 
environmental degradation that may result from growth. It doesn’t tell us whether growth is 
actually improving people’s lives. And yet, as the Financial Times points out: “GDP may be 
anachronistic and misleading. It may fail entirely to capture the complex trade-offs between present 
and future, work and leisure, ‘good’ growth and ‘bad’ growth. Its great virtue, however, remains that it 
is a single, concrete number. For the time being, we may be stuck with it” (Pilling, 2014). 
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GDP is also problematic because it may not fully capture the benefits of the digital economy. GDP has 
not kept pace with changes in the way the economy works (Libert and Beck, 2016). GDP 
misrepresents important activities related to things like knowledge creation, product quality 
improvements, stay-at-home parenting, or the gig economy. The sharing economy (think Uber or 
AirBnb) may not be properly valued through existing measurements. By one estimate, the sharing 
economy may have been worth around $14 billion in 2014, and could grow to $335 billion by 2025 
(Yaraghi and Ravi, 2016). Misrepresenting or failing to capture such a rapidly growing industry 
would skew measurements of our true productivity. 
 
With this debate over GDP and productivity in mind, any discussion over the impact of AI on 
productivity should entertain the concept of “consumer surplus,” that is the total value to the 
consumer for the use of an online good or service less any costs that consumers pay to access those 
services (Pélissié du Rausas et al., 2011). This has been advanced as a foundational concept in 
estimating the value of the digital economy. 
 
A 2011 report from Mckinsey Global put the value of the “internet economy” at around $8 trillion, 
accounting for more than 3 percent of global GDP among developed countries.4 If it were a sector, 
the internet would be more significant than agriculture or utilities (Figure 11).  Across the different 
countries explored in the report, the total consumer surplus ranged from $10 billion in Germany and 
France to near $64 billion in the United States. A separate but related piece of Mckinsey analysis 
(also 2011) looked at the economic value of internet search in five major economies (Brazil, France, 
India, Germany, and the United States). They estimated internet search was worth close to $870 
billion across the global economy. Of that, roughly 31 percent ($240 billion) is not captured in GDP 
statistics, but represents consumer surplus, or value accruing from benefits of convenience, lower 
prices, and ease of information access.  
 
Other studies have attempted to measure the impact of the internet on GDP and consumer surplus. 
One 2009 study completed by consultants with Harvard Business School estimated that 
approximately 2 percent of Americans were employed directly or indirectly by internet-related 

                                                 
4 Based on an analysis of 13 economies accounting for 70 percent of global GDP  

Figure 121. Internet Contribution to GDP 

Source: Manyika & Roxburgh, 2011 
Figure 122. Sector Contribution to GDP 

Source: Manyika & Roxburgh, 2011 
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activities (advertising, commerce, IT infrastructure, maintenance), generating close to $300 billion in 
wages. In addition to jobs, the internet adds an estimated $175 billion to the U.S. economy through 
retail, advertising, and payments to internet service providers. Moreover, between work and leisure, 
they estimated Americans spend close to 68 hours per month on the internet, which produces an 
estimated $680 billion in value (Quelch, 2009). A 2016 study from Georgetown University estimated 
that for every $1 spent using Uber, a U.S.-based ride-sharing service, $1.60 of consumer surplus was 
generated. They estimated that across the U.S., Uber helped generate $6.8 billion in consumer 
benefits (Cohen et al., 2016). 
 
Nevertheless, consumer surplus is notoriously difficult to measure. Measuring surplus requires 
knowing the demand for a product. But many digital services like Facebook and Google are free. 
Without a price, it is difficult to quantify demand. Moreover, users of digital services like Facebook 
derive different levels of surplus or satisfaction. The value we place on Facebook is dependent on our 
networks; if more of our friends are actively engaged with Facebook and social media, we will derive 
greater value. These kinds of implications raise questions about whether it is possible to derive a 
single demand curve for digital products. At the same time, the growth of the internet and the digital 
economy is undeniable, and many of its welfare-producing activities are not currently well captured 
in GDP measurements. New methods of capturing value-add in the digital age will produce a more 
accurate picture of productivity, particularly in the developed world, and allow researchers and 
policymakers to respond and adapt appropriately. 
 

Labor 
 

In the present day, nothing captures the attention of mainstream media and policymakers like the 
potential impact of artificial intelligence on labor, particularly through the computerization and 
automation of jobs. At the 2017 World Economic Forum in Davos, a panel of technology leaders 
and AI experts focused not on the potential for large profits and the business gains, but how to 
deal with those left behind in the digital age (Bradshaw, 2017). The populist backlash to the 
impacts of globalization that culminated in Brexit and the election of Donald Trump as President 
in the United States, coupled with the rise of populist parties in Europe shows that these concerns 
are well founded and can have real political implications. Adding fuel to the flames of populist 
sentiments are headline-grabbing analyses such as the 2013 report by from Oxford University 
that estimated close to 47 percent of jobs in the U.S. labor market were at risk of automation in 
the next 10 years (Frey & Osborne, 2013). Perhaps AI is leading us all into a jobless future. 
 
 In reality, it is difficult to quantify the effect of technology on labor, and even more difficult to 
predict the scope and breadth of future automation. For every headline predicting massive social 
dislocation from AI, there are corresponding analyses predicting that AI will unleash a new wave 
of jobs in new industries that will undoubtedly emerge from the AI revolution. The optimists 
argue that AI will take over jobs that are dull and dangerous, freeing up human labor for more 
creative and fulfilling tasks. This remains a widely debated and hotly contested issue. Let us look 
at some of the forecasted implications. 
 

The 2016 World Economic Forum produced a background report on the future of jobs. In the 
report, they surveyed 15 of the world’s largest economies, comprising approximately 1.86 billion 
workers or 65 percent of the total global workforce. They concluded that artificial intelligence 
will lead to a net loss of 5.1 million jobs between 2015 and 2020 (7.2 million lost, 2.1 million 
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gained). Consequently, they estimate global unemployment could rise by 0.3 percent (Schwab & 
Samans, 2016). Mckinsey Global Institute estimated that activities accounting for close to $15 
trillion in wages globally could be automated by adapting current technologies, and that half of 
all work today could be automated away by 2055 (Manyika et al., 2017). While developed 
countries are likely to experience the effects of AI more rapidly because their economies depend 
more on technology, the effects are by no means restricted to the developed world. According to 
the World Bank, as many as 77 percent of jobs in China, 69% in India, and 85% in Ethiopia may 
be at risk of automation (World Bank Group, 2016). The jobs at risk for automation are highly 
repetitive tasks in structured environments, and data collection and analysis. Laborers in 
developing countries may also be sensing a trend: according to a survey of workers in 13 
countries, 80 percent of respondents in China and 62 percent in India felt AI would replace 
human labor in repetitive tasks. In Germany and the U.K. by contrast, only 39 and 45 percent of 
respondents felt the same way (Wong, 2016). The jobs at risk for automation are highly 
repetitive tasks in structured environments, and data collection and analysis. Sectors most at-risk 
he U.S. market include manufacturing, food service, retail, and some service sectors (Manyika et 
al, 2017).  
 
Estimating the impact of AI on labor also forces us to think about jobs as a series of tasks rather 
than as one monolithic entity. The same Mckinsey Global Institute Report actually estimates that 
only 5 percent of jobs could be fully automated, but that close to 60 percent of jobs in the U.S. 
market could be up to 30 percent automated at a task level within the next 20 years. This adds 
weight to the argument of optimists that AI will actually free human labor for more meaningful 
activity. A 2016 report from the OECD looked at the prospects of automation across OECD 
countries. Employing similar estimation techniques as the Oxford paper but controlling for 
within job tasking, they estimated the risk of computerization and found on average, 9 percent of 
jobs are at-risk (Arntz et al., 2016). 
 
There is more evidence that technology creates jobs by creating new products, changing 
preferences, and inducing competitiveness. In a 2016 report, analysts from Deloitte looked at the 
history of jobs and technology in the U.S. and U.K. between 1871 and today. They concluded 
that over the past 144 years, technology has created more jobs than it has cost. While technology 
has replaced some jobs, it has created new ones in knowledge and service sectors like medicine 
and law. Technology has reduced the cost of basic goods and raised incomes, prompting the 
creation of new jobs to meet changing demand (Stewart et al., 2015). 
 

Localization of Production and International Trade 
  
Another trend that could be significantly impacted by the rise of artificial intelligence deserves 
consideration: reshoring and the localization of production. Automated technologies are making 
it increasingly inexpensive for companies to produce goods at home, reducing the need for 
offshoring in search of cheap labor and competitive. In the U.S. there has been discussion around 
the idea of reshoring and anecdotal evidence suggests it is happening, yet critics contest the U.S. 
government does not maintain exhaustive data on reshoring and that the definition of reshoring 
itself remains contested, thus it is difficult to say whether it represents an industry-wide trend 
(Rivkin, 2014).  
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There is plenty of anecdotal evidence to hint at a trend. The term reshoring refers to the process 
of relocating production centers in typically developed countries. A (2012) MIT survey of 340 
participants from the manufacturing industry found that 33 percent were “considering” bringing 
manufacturing back to U.S. shores, while a 2013 report in the Economist found that between 37 
and 48 percent of manufacturing firms with $1 billion or more in revenue that were surveyed 
were considering reshoring or had already begun the process. Individual examples of large 
companies moving production back to the U.S. or Europe have appeared in the media frequently 
in recent years (Oldenski, 2015). For instance: 
 

 In 2009 General Electric relocated production of water heaters from China to Kentucky 

 In 2010 Master Lock returned 100 jobs to Milwaukee, Wisconsin 

 In 2012 Caterpillar opened a new plant in Texas 

 In 2014 General Motors moved a production plant from Mexico to Tennessee 

 In 2015 Ford began announced it would begin producing engines at its Cleveland auto 

plant 

 In August 2016, Adidas opened its first manufacturing plant in Germany in over 30 years 

 
The anectodal evidence does not necessarily constitute a trend. For instance, the “reshoring 
index,” put together by consultancy group ATKearney reports that there were only about 60 
cases of reshoring in the U.S. in 2015, down from 300 cases in 2014. The index estimates there 
were 210 cases in 2013, 104 in 2012, 64 in 2011, and 16 in 2011, small figures when considering 
that U.S. multinational corporations employ as many as 36 million people worldwide (Oldenski, 
2015). These examples of reshoring also say nothing of any concurrent offshoring activity that 
may have happened during the same period. 
 
 

 
 

Figure 13. Published Cases of U.S. "Reshoring" 

Source: ATKearney, 2015 

 
 
Nevertheless, the fact remains that automation, coupled with low-cost energy and rising wages in 
the developing world, particularly China and India, has the potential to make companies rethink 
where they base their operations. There is also a strong pull for companies to base operations 
close to their primary markets to reduce shipping time and costs and improve their ability to 
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respond to local market needs and fluctuations. Moreover, in today’s populist political climate, 
there are incentives to encourage companies to invest locally. In an AI-led world, it’s possible 
that the majority of production happens locally, reducing the necessity for the cross-border 
movement of goods and services. 
 
The energy sector is one area where this potential trend could manifest itself with significant 
implications for global trade. AI has the potential to disrupt current energy patterns by driving 
growth in renewable production that causes a reduction in the volume of international trade 
traditional energy products, particularly fossil fuels 
 
AI is already improving the efficacy of renewable energy production. A core challenge in 
harnessing renewable energies like wind and solar is their intermittency. Machine learning is 
helping to overcome this hurdle by crunching real-time data on weather conditions to produce 
accurate forecasts, allowing companies to better harness these sources (Bullis, 2014). In 
Germany, companies are using machine learning to crunch data and predict wind generation 
capacity in 48 hour increments which allows the national energy grid to respond to energy 
demand without relying on traditional energy sources to cover shortfalls (A. Thompson, 2016). 
 
AI is also poised to boost renewable generation by significantly enhancing demand-side 
efficiency. Machine learning, coupled with smart meters and smart applications, can help large 
grid systems identify consumption patterns and adjust energy provision and storage accordingly. 
AI technology is being applied to mine data that allows grid systems to come up with suitable 
and appropriate risk/reward mechanisms that both incentivize their customers to participate in 
smart energy and obtain measurable benefits (Robu, 2017). We can already see some of these 
patterns beginning to emerge. For instance, 2016 was the cleanest year on record for the U.K., 
where coal-fired energy production fell to under 10 percent of total production, down from 40 
percent in 2012. Wind power generation alone was higher than coal, at 10.2 percent (Wilson & 
Staffell, 2017). On a Sunday in May 2016, close to 100 percent of Germany’s power demand 
was met using only renewable sources, primarily wind and solar. For a short 15 minute window 
during that day, power prices in Germany actually went negative (Shankelman, 2016). 
 
The growth of renewable energy capable of being domestically sourced and harnessed has 
important implications for global trade. Crude oil and its derivatives remains the most valuable 
traded commodity in the world. According to the UN Conference on Trade and Development 
(UNCTAD), trade in oil, gas, and petroleum products were estimated at between $1 and $2 
trillion in 2014 and 2015, among the largest of the 25 categories of goods and services tracked by 
the organization. British Petroleum (BP) estimated that in 2015 close to 1.02 billion tons of crude 
oil were exported in 2015 and 1.9 billion tons were imported (British Petroleum, 2016). The 
global trade in energy products remains significant today, but renewable generation could slow 
that trade. The IFs Current Path Forecast estimates that by 2050 close to 40 percent of the 
world’s energy production will come from renewable sources, up from around 6 percent today.  
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Conclusion 
 
This report has detailed the conceptual development of AI and explained the construction of an 
AI representation in IFs. It has also laid out the potential for modeling the impact of AI within 
IFs with a particular focus on economic productivity, labor, and international trade and 
production localization. We will not try to summarize our findings here but instead encourage 
the reader to revisit the executive summary. We conclude this report by reminding readers of the 
benefits that quantitative modeling can bring to the understanding of AI its disparate impacts. 
We have been forthcoming about the level of uncertainty surrounding this forecasting exercise 
and have designed the AI representation to provide maximum user flexibility and freedom. 
Artificial Intelligence is rapidly unfolding and expected to have broad social and global impact. 
To allow us to better unpack AI’s development requires connecting the AI to other areas of the 
IFs model. IFs remains uniquely placed to pursue this endeavor and we fully believe further 
exploration and forecasting of this issue will be beneficial to the research community and 
broader public alike. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 
Pardee Center: Modeling AI 

References 
 
Ackerman, E., 2016. "Winograd Schema Challenge Results: AI Common Sense Still a Problem, 

for Now." IEE Spectrum. Available: 
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/winograd-schema-
challenge-results-ai-common-sense-still-a-problem-for-now. (accessed 26 April 2017). 

 
Adams, S.S., Arel, I., Bach, J., Coop, R., Furlan, R., Goertzel, B., Hall, J.S., Samsonovich, A., 

Scheutz, M., Schlesinger, M., Shapiro, S.C., Sowa John, 2012. "Mapping the Landscapre 
of Human-Level Artificial Intelligence." AI Magazine 33, 25–42.  
 

AI Impacts, 2016. Global computing capacity. AI Impacts. 16 February 2016. Available: 
http://aiimpacts.org/global-computing-capacity/ (accessed 09 April 2017). 

 
Albergotti, R., 2014. "Zuckerberg, Musk Invest in Artificial-Intelligence Company." Wall Street 

Journal. 21 March 2014. Available: https://blogs.wsj.com/digits/2014/03/21/zuckerberg-
musk-invest-in-artificial-intelligence-company-vicarious/ (accessed 21 August 2016). 

 
Amazon, 2017. "Amazon Machine Learning." Available: https://aws.amazon.com/machine-

learning/ (accessed 13 April 2017). 
 
Arntz, M., Gregory, T., Zierahn, U., 2016. "The Risk of Automation for Jobs in OECD 

Countries: A Comparative Analysis." OECD Social, Employment, and Migration 

Working Papers, 189. Paris: OECD. 

 
Asimov, I., 1950. I, Robot. (Connecticut: Fawcett Publications).  
 
ATKearney, 2015. "U.S. Reshoring: Over Before It Began?" ATKearney: U.S. Reshoring Index. 

Available: 
https://www.atkearney.com/documents/10192/7070019/US+Reshoring.pdf/14777afa-
0c14-460e-937b-11233be340b6. (accessed 07 April 2017).  

 
Azeez, W., 2016. "The Morning Ledger: Productivity Slump Threatens Long-Term U.S. 

Growth." Wall Street Journal. 10 August 2016. Available: 
https://blogs.wsj.com/cfo/2016/08/10/the-morning-ledger-productivity-slump-threatens-
long-term-u-s-growth/ (accessed 12 April 2017). 

 
Barrat, J., Goertzel, B., 2011. "How Long Till AGI? - Views of AGI-11 Conference 

Participants." Humanity+ Magazine. 16 September 2011. Available: 
http://hplusmagazine.com/2011/09/16/how-long-till-agi-views-of-agi-11-conference-
participants/ (accessed 20 April 2017). 

  
Baum, S.D., Goertzel, B., Goertzel, T.G., 2011. "How Long Until Human-Level AI? Results 

from an Expert Assessment." Technological Forecasting and Social Change 78, 185–
195. 

 



44 
Pardee Center: Modeling AI 

Blanke, J., 2016. "What is GDP, and how are we misusing it?" World Economic Forum. 13 April 
2016. Available: https://www.weforum.org/agenda/2016/04/what-is-gdp-and-how-are-
we-misusing-it/ (accessed 31 July 2016). 

 
Bloom, N., Sadun, R., Reenen, J.V., 2012. "Americans Do IT Better: US Multinationals and the 

Productivity Miracle." American Economic Review 102, 167–201.  
 
Bostrom, N., 2014. Superintelligence: paths, dangers, strategies, First edition. (Oxford: Oxford 

University Press). 
 
Sandberg, A., Bostrom, N., 2011. "Machine Intelligence Survey," Technical Report #2011-1, 

Future of Humanity Institute, Oxford University: pp. 1-12. 
 
Bourzac, K., 2016. "Intel: Chips Will Have to Sacrifice Speed Gains for Energy Savings." MIT 

Technology Review. 05 February 2016. Available: 
https://www.technologyreview.com/s/600716/intel-chips-will-have-to-sacrifice-speed-
gains-for-energy-savings/ (accessed February 21, 2017). 

 
Bradshaw, T., 2017. "Tech Leaders at Davos fret over effect of AI on jobs." Financial Times. 29 

January 2017. Available: https://www.ft.com/content/744ad7fa-de66-11e6-9d7c-
be108f1c1dce (accessed 03 March 2017). 

 
British Petroleum, 2016. "Statistical Review of World Energy June 2016." BP. Available: 

http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-
energy/oil/oil-trade-movements.html (accessed 18 March 2017). 

 
Bughin, J., Corb, L., Manyika, J., Nottebohm, O., Chui, M., Barbat, B. de M., Said, R., 2011. 

"The Impact of Internet Technologies: Search." McKinsey Global Institute. August 2011. 
Available: http://www.mckinsey.com/business-functions/marketing-and-sales/our-
insights/measuring-the-value-of-search (accessed 17 April 2017). 

 
Bullis, K., 2014. "Smart Wind and Solar Power." MIT Technology Review. May/June 2014. 

Available: https://www.technologyreview.com/s/526541/smart-wind-and-solar-power/ 
(accessed 09 September 2016). 

 
Byrnes, N., 2016. "AI Hits the Mainstream." MIT Technology Review. 28 March 2016. 

Available: https://www.technologyreview.com/s/600986/ai-hits-the-mainstream/ 
(accessed 09 April 2017). 

 
CB Insights, 2017. "The 2016 AI Recap: Startups See Record High in Deals and Funding." CB 

Insights. Available: https://www.cbinsights.com/blog/artificial-intelligence-startup-
funding/ (accessed 12 April 2017). 

 
Chen, N., Christensen, L., Gallagher, K., Mate, R., Rafert, G., 2016. "Global Economic Impacts 

Associated with Artificial Intelligence." The Analysis Group. Available: 



45 
Pardee Center: Modeling AI 

http://www.analysisgroup.com/uploadedfiles/content/insights/publishing/ag_full_report_
economic_impact_of_ai.pdf (accessed 12 August 2016). 

 
Cisco, 2016. "Cisco Global Cloud Index White Paper: 2015-2020." Cisco. Available: 

http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-
index-gci/white-paper-c11-738085.pdf (accessed 13 April 2017. 

  
Cohen, P., Hahn, R., Hall, J., Levitt, S., Metcalfe, R., 2016. "Using Data to Estimate Consumer 

Surplus: The Case of Uber." Working Paper No. 22627. National Bureau of Economic 

Research, Cambridge, Mass. 
 
DARPA. 2017. "Urban Challenge." archived. Available: http://archive.darpa.mil/grandchallenge/ 

(accessed 15 March 2017). 
 
Diamandi, Z., Dubey, A., Pleasance, D., Vora, A., 2011. "Winning in the SMB Cloud: Charting 

a Path to Success." McKinsey & Company, New York, N.Y. 
 
Economist, 2016. "Why Firms are Piling into Artificial Intelligence." The Economist. 01 April 

2016. Available: http://www.economist.com/blogs/economist-
explains/2016/04/economist-explains (accessed 03 March 2017). 

 
The Economist, 2015. "The sky’s the limit." The Economist. 17 October 2015. Available 

http://www.economist.com/news/leaders/21674714-shifting-computer-power-cloud-
brings-many-benefitsbut-dont-ignore-risks-skys-limit (accessed 02 April 2017). 

 
Economist Intelligence Unit, 2016. "Ascending Cloud: The adoption of cloud computing in five 

industries. The Economist. 01 March 2016. Available: 
https://www.eiuperspectives.economist.com/technology-innovation/ascending-cloud-
adoption-cloud-computing-five-industries-0 (accessed 04 April 2017). 

 
Ericsson, 2016. "Mobility Report: 2016. On the Pulse of the Networked Society." Ericsson. 

Available: https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf 
(accessed 08 April 2017). 

 
Evans, T.G., 1964. "A Heuristic Program to Solve Geometric-Analogy Problems," in: Spring 

Joint Computer Conference. pp. 328–338. 
 
Ferucci, D., Brown E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur AA., et al. 2010. 

"Building Watson: An Overview of the DeepQA Project." AI Magazine. Fall 2010. 
Available: http://www.aaai.org/Magazine/Watson/watson.php (accessed 03 March 2017).  

 
Fischetti, M., 2011. "Computers versus Brains." Scientific American. 01 November 2011. 

Available: https://www.scientificamerican.com/article/computers-vs-brains/ (accessed 08 
June 2016). 

 



46 
Pardee Center: Modeling AI 

Foda, K., 2016. "The Productivity Slump: A Summary of the Evidence." Brookings Institute. 

Available: https://www.brookings.edu/research/the-productivity-slump-a-summary-of-
the-evidence/ (accessed 18 April 2017). 

 
French, R.M., 2000. "The Turing Test: the first 50 years." Trends in Cognitive Sciences 4, 115–

122. 
 
Frey, C.B., Osborne, M.A., 2013. "The Future of Employment: How Susceptible are Jobs to 

Computerization?" 17 September 2013. Oxford Martin School, Oxford: U.K. 
  
Frey, C.B., Osborne, M.A., Holmes, C., Rahbari, E., Curmi, E., Garlick, R., Chua, J., 

Friedlander, G., Chalif, P., McDonald, G., 2016. "Technology at Work V2.0. Citi GPS." 
03 January 2016. Oxford Martin School & Citi. Available: 
http://www.oxfordmartin.ox.ac.uk/downloads/reports/Citi_GPS_Technology_Work_2.pd
f (accessed 09 July 2016).  

 
Ginsberg, M.L., 1993. Essentials of Artificial Intelligence. (San Mateo: Morgan Kaufmann 

Publishers). 
 
Goertzel, B., 2012. "What counts as a conscious thinking machine?"  NewScientist. 05 

September 2012. https://www.newscientist.com/article/mg21528813-600-what-counts-
as-a-conscious-thinking-machine/ (accessed 19 April 2017). 

 
Gordon, Robert J. 2012. "Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six 

Headwinds." Working Paper No. 18315. National Bureau of Economic Research. 
Cambridge, Mass. 

 
Guszcza, J., Lucker, J., Lewis, H., 2013. "Too Big to Ignore." Deloitte University Press. 31 

January 2013. Available: https://dupress.deloitte.com/dup-us-en/deloitte-review/issue-
12/too-big-to-ignore.html (accessed 22 February 2017). 

 
Haltiwagner, J., 2011. "Firm Dynamics and Productivity Growth." European Investment Bank 

Papers 16, 116–136. 
 
Hamel, G., Zanini, M., 2016. "More of Us Are Working in Big Bureaucratic Organizations than 

Ever Before." Harvard Business Review. 05 July 2016. Available: 
https://hbr.org/2016/07/more-of-us-are-working-in-big-bureaucratic-organizations-than-
ever-before?utm_source=twitter&utm_medium=social&utm_campaign=harvardbiz 
(accessed 18 August 2016). 

 
Harnad, S., 1990. "The Symbol Grounding Problem." Physica D: Nonlinear Phenomena 42, 

335–346. 
 
Hawkins, J., Dubinsky, D., 2016. "What Is Machine Intelligence Vs. Machine Learning Vs. 

Deep Learning Vs. Artificial Intelligence (AI)?" Numenta. 11 January 2016. Available: 
http://numenta.com.s3-website-us-west-2.amazonaws.com/blog/2016/01/11/machine-



47 
Pardee Center: Modeling AI 

intelligence-machine-learning-deep-learning-artificial-intelligence/ (accessed 07 July 
2016).  

   
Hernández-Orallo, J., 2017. The Measure of All Minds: Evaluating Natural and Artificial 

Intelligence. (Cambridge: Cambridge University Press), United Kingdom. 
 
Hilbert, M., Lopez, P., 2012. "How to Measure the World’s Technological Capacity to 

Communicate, Store and Compute Information Part I: Results and Scope." International 

Journal of Communication 6, 956–979. 
 
Hof, R., 2013. "Deep Learning." MIT Technology Review. Available: 

https://www.technologyreview.com/s/513696/deep-learning/ (accessed 10 July 2016). 
 
Hollinger, P., 2016. "Meet the cobots: humans and robots together on the factory floor." 

Financial Times. 04 May 2016. Available: https://www.ft.com/content/6d5d609e-02e2-
11e6-af1d-c47326021344 (accessed 13 July 2016). 

 
Howard, P.N., 2015. "Sketching out the Internet of Things Trendline." Brookings Institute. 09 

June 2015. Available: https://www.brookings.edu/blog/techtank/2015/06/09/sketching-
out-the-internet-of-things-trendline/ (accessed 03 March 2017). 

 
Hughes, Neil. 2014. "Tests find Apple's Siri improving, but Google Now voice search slightly 

better." appleinsider. 22 July 2014. Available: 
http://appleinsider.com/articles/14/07/22/tests-find-apples-siri-improving-but-google-
now-voice-search-slightly-better (accessed 24 March 2017). 

 
IDC, 2016. "Worldwide Public Cloud Services Spending Forecast to Reach $195 Billion by 

2020, According to IDC." International Data Corporation. 10 August 2016. Available:  
http://www.idc.com/getdoc.jsp?containerId=prUS41669516 (accessed 12 March 2017). 

 
International Federation of Robotics, 2017. "History of Robotics." International Federation of 

Robotics. Available: https://ifr.org/robot-history. (accessed 03 March 2017). 
 
International Federation of Robotics, 2016. "World Robotics 2016 Industrial Robots." 

International Federation of Robotics. Available: 
https://ifr.org/img/uploads/Executive_Summary_WR_Industrial_Robots_20161.pdf 
(accessed 20 April 2017). 

 
International Federation of Robotics, 2015. "World Robotics Survey: Industrial Robots are 

Conquering the World." International Federation of Robotics. Available: 
https://ifr.org/ifr-press-releases/news/world-robotics-survey-industrial-robots-are-
conquering-the-world- (accessed 19 July 2016). 

 
International Telecommunications Union, 2016. "ICT Facts and Figures 2016." International 

Telecommunications Union. Available: http://www.itu.int/en/ITU-
D/Statistics/Pages/facts/default.aspx (accessed 19 April 2017). 



48 
Pardee Center: Modeling AI 

 
Isaac, M., Boudette, N.E., 2017. "Ford to Invest $1 Billion in Artificial Intelligence Start-Up." 

The New York Times. 10 February 2017. Available: 
https://www.nytimes.com/2017/02/10/technology/ford-invests-billion-artificial-
intelligence.html (accessed 05 March 2017). 

 
Knight, W., 2017. "Deep learning boosted AI. Now the next big thing in machine intelligence is 

coming." MIT Technology Review. Available:  
https://www.technologyreview.com/s/603501/10-breakthrough-technologies-2017-
reinforcement-learning/ (accessed 07 March 2017). 

 
Knight W., 2017. "Baidu System Rivals People at Speech Recognition." MIT Technology 

Review. 16 December 2015. Available: 
https://www.technologyreview.com/s/544651/baidus-deep-learning-system-rivals-people-
at-speech-recognition/ (accessed 17 March 2017).  

 
Krugman, P.R., 1994. The Age of Diminished Expectations: U.S. Economic Policy in the 1990s, 

third edition. (Cambridge: MIT Publishing).  
 
Kurzweil, R., 2005. The singularity is near: when humans transcend biology. (Viking: New 

York). 
 
Lam, B., 2017. "Can Declining Productivity Growth Be Reversed?" The Atlantic. 14 March 

2017. Available: https://www.theatlantic.com/business/archive/2017/03/productivity-
interest-rate/519522/ (accessed 20 April 2017). 

 
Le, Q., Ranzato, MA., Monga R., Devin, M., Chen K., Corrado, GS., et al. 2012. "Building 

High-Level Features Using Large Scale Unsupervised Learning." In International 

Conference on Machine Learning. Edinburgh, U.K. 
 
Lewis-kraus, G., 2016. "The Great A.I. Awakening." The New York Times. 14 December 2016. 

Available: https://www.nytimes.com/2016/12/14/magazine/the-great-ai-awakening.html 
(accessed 07 March 2017). 

 
Libert, B., Beck, M., 2016. "GDP is a Widely Flawed Measure for the Digital Age." Harvard 

Business Review. 28 July 2016. Available: https://hbr.org/2016/07/gdp-is-a-wildly-
flawed-measure-for-the-digital-age (accessed 20 March 2017). 

 
Ma, B., Nahal, S., Tran, F., 2015. "Robot Revoluton- Global Robot & AI Primer." Bank of 

America Merrill Lynch. December 2015. Pages 1-13. 
 
Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D., 2015. 

"Unlocking the Potential of the Internet of Things." McKinsey Global Institute, New 
York, N.Y. 

 



49 
Pardee Center: Modeling AI 

Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., Marrs, A., 2013. "Disruptive 
Technologies: Advances that will transform life, business, and the global economy." 
McKinsey Global Institute. New York, N.Y. 

 
Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., Dewhurst, M., 2017. 

"Harnessing Automation for a Future that Works." McKinsey Global Institute. New York, 
N.Y.  

  
Manyika, J., Roxburgh, C., 2011. "The Great Transformer: The Impact of the Internet on 

Economic Growth and Prosperity. McKinsey Global Institute. New York, N.Y. 
 
MarketsandMarkets, 2016a. "Machine Learning as a Service (MLaaS)- Global Forecast to 2021." 

MarketsandMarkets. November 2016. Available:  
http://www.marketsandmarkets.com/Market-Reports/machine-learning-as-a-service-
market-183667795.html (accessed 23 April 2016). 

 
MarketsandMarkets, 2016b. "Natural Language Processing Market worth 16.07 billion by 2021." 

MarketsandMarkets. Available: 
http://www.marketsandmarkets.com/PressReleases/natural-language-processing-nlp.asp 
(accessed 20 April 2017). 

 
McCorduck, P., 2004. Machines who think: a personal inquiry into the history and prospects of 

artificial intelligence, 25th anniversary update. (Maine: A.K. Peters). 
 
McGowan, M.A., Andrews, D., Criscuolo, C., Nicoletti, G., 2015. The Future of Productivity. 

OECD, Paris, France. 
 
Metz, R. 2013. "AI Startup Says it has Defeated Captchas." MIT Technology Review. 28 October 

2013. Available: https://www.technologyreview.com/s/520581/ai-startup-says-it-has-
defeated-captchas/ (accessed 28 February 2017). 

 
Michigan News. 2015. "U-M opens Mcity test environment for connected and driverless 

vehicles." 20 July 2015. Available: http://ns.umich.edu/new/multimedia/videos/23020-u-
m-opens-mcity-test-environment-for-connected-and-driverless-vehicles (accessed 20 
March 2017). 

 
Moon, P., 2007. "Three Minutes with Steve Wozniak." PCWorld. 19 July 2007. Available: 

http://www.pcworld.com/article/134826/article.html (28 April 2017). 
 
Moore, G.E., 1965. "Cramming more components onto integrated circuits." Electronics 8, page 

114-117. 
 
Moosavi-Dezfooli, S.-M., Fawzi, A., Fawzi, O., Frossard, P., 2016. "Universal adversarial 

perturbations," in IEEE Conference on Computer Vision and Pattern Recognition, 2017.  
 



50 
Pardee Center: Modeling AI 

Muehlhauser, L., 2013. "What is AGI?" Machine Intelligence Research Institute. 11 August 
2013. Available: https://intelligence.org/2013/08/11/what-is-agi/ (accessed 01 April 
2017). 

 
Muller, V.C., Bostrom, N., 2014. "Future progress in artificial intelligence: A Survey of Expert 

Opinon," in: Vincent C. Muller (ed.), Fundamental Issues of Artificial Intelligence. 
Synthese Library; Berlin: Springer). 

 
Newell, A., Shaw, J.C., Simon, H.A., 1959. "Report on A General Problem-Solving Program" 

No. P-1584. Rand Corporation. Washington, D.C. 
 
Ng, A., 2016. "Andrew Ng: What AI Can and Can’t Do." Harvard Business Review. 09 

November 2016. Available: https://hbr.org/2016/11/what-artificial-intelligence-can-and-
cant-do-right-now (accessed 17 March 2016). 

 
Nguyen, A., Yosinki, J., Clune, J., 2015. Deep Neural Networks are Easily Fooled: High 

Confidence Predictions for Unrecognizable Images. In Computer Vision and Pattern 
Recognition, IEEE, 2015. 

 
National Institute of Standards and Technology. 2012. "NIST Open Machine Translation 

Evaluation (OpenMT12). NIST. 28 August 2012. Available: 
https://www.nist.gov/multimodal-information-group/openmt12-evaluation-
results#progress (accessed 16 March 2017). 

 
Nordhaus, W.D., 2001. "The Progress of Computing" Version 4.4. Yale University and National 

Bureau of Economic Research. August 2001.  
 
Oldenski, L., 2015. "Reshoring by US Firms: What Do the Data Say?" Policy Brief No. PB15-

14. Peterson Institute for International Economics. Available: 
https://piie.com/publications/policy-briefs/reshoring-us-firms-what-do-data-say (21 April 
2017). 

 
O’Mahony, M., Timmer, M.P., 2009. "Output, Input and Productivity Measures at the Industry 

Level: The EU KLEMS Database." The Economic Journal 119, F374–F403. 
 
Parloff, R., 2016. "Why Deep Learning Is Suddenly Changing Your Life." Fortune. 28 

September 2016. Available: http://fortune.com/ai-artificial-intelligence-deep-machine-
learning/ (accessed 12 April 2017).  

 
Pattani, A., 2016. "Building the city of the future- at a $41 trillion price tag." CNBC. Available: 

http://www.cnbc.com/2016/10/25/spending-on-smart-cities-around-the-world-could-
reach-41-trillion.html (accessed 21 April 2017). 

Pélissié du Rausas, M., Manyika, J., Hazan, E., Bughin, J., Chui, M., Said, R., 2011. "Internet 
Matters: The Net’s sweeping impact on growth, jobs, and prosperity." McKinsey Global 

Institute, New York, NY. 
 



51 
Pardee Center: Modeling AI 

Pilling, D., 2014. "Has GDP Outgrown its Use?" Financial Times. 04 July 2014. Available:  
https://www.ft.com/content/dd2ec158-023d-11e4-ab5b-00144feab7de (12 March 2016). 

 
Purdy, M., Daugherty, P., 2016. "Why Artificial Intelligence is the Future of Growth." 

Accenture. Available: https://www.accenture.com/us-en/insight-artificial-intelligence-
future-growth (accessed 20 April 2017). 

 
Qiang, C.Z.-W., 2009. "Telecommunications and Economic Growth" (Unpublished Paper). 

World Bank, Washington, D.C. 
 
Quelch, J., 2009. "Quantifying the Economic Impact of the Internet." Harvard Business School. 

Available: http://hbswk.hbs.edu/item/quantifying-the-economic-impact-of-the-internet 
(accessed 22 April 2017). 

 
Regalado, A., 2014. "Is Google Cornering the Market on Deep Learning?" MIT Technology 

Review. 29 June 2014. Available: https://www.technologyreview.com/s/524026/is-
google-cornering-the-market-on-deep-learning/ (accessed 06 May 2016). 

 
Rivkin, J., 2014. "Reshoring US Manufacturing." Economist Intelligence Unit. 15 December 

2014. Available: https://www.eiuperspectives.economist.com/economic-
development/reshoring-us-manufacturing (accessed 20 April 2017). 

 
Robu, V., 2017. "How AI Can Help Renewables Work Better for the Energy Grid." Newsweek. 

30 January 2017. Available: http://www.newsweek.com/uk-grid-artificial-intelligence-
energy-supply-supply-and-demand-550148 (accessed 29 April 2017). 

 
Russakovsky, O., Deng J., Hao S., Krause J., Satheesh, S., Ma, S., et al. 2015. "ImageNet Large 

Scale Visual Recognition Challenge." International Journal of Computer Vision, 115. 
211-252.  

 
Rutkin, A.H., 2017. "The Tiny Changes that can cause AI to fail." BBC FutureNow. April 2017. 

Available: http://www.bbc.com/future/story/20170410-how-to-fool-artificial-intelligence 
(accessed 01 May 2017). 

 
Sandberg, A., Bostrom, N., 2008. "Whole Brain Emulation: A Roadmap" (No. 2008–3). Oxford 

University, Future of Humanity Institute.  
 
Schatsky, D., Muraskin, C., Gurumurthy, R., 2014. "Demystifying Artificial Intelligence." 

Deloitte University Press. 04 November 2014. 
 
Schwab, K., Samans, R., 2016a. "The Fourth Industrial Revolution: what it means, how to 

respond." World Economic Forum. 14 January 2016. Available: 
https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-
means-and-how-to-respond/ (accessed 20 July 2016). 

 



52 
Pardee Center: Modeling AI 

Schwab, K., Samans, R., 2016b. "The Future of Jobs: Employment, Skill and Human Capital." 
World Economic Forum. January 2016. Available: 
http://www3.weforum.org/docs/WEF_GCP_Employment_Global_Challenge_pager.pdf 
(accessed 13 May 2016). 

 
Shankelman, J., 2016. "Germany Just Got Almost All of Its Power From Renewable Energy." 

Bloomberg. 16 May 2016. Available: https://www.bloomberg.com/news/articles/2016-
05-16/germany-just-got-almost-all-of-its-power-from-renewable-energy (accessed 28 
April 2017). 

 
Simchi-Levit, D., 2012. "2012 Annual Re-shoring report." Massachusetts Institute of 

Technology. Available: http://supplychain.mit.edu/wp-
content/uploads/2014/10/mit_forum_2012_annual_u_s_reshoring_report.pdf (accessed 
19 April 2017). 

 
Simonite, T., 2016. "Moore’s Law is Dead. Now What?" MIT Technology Review. 13 May 2016. 

Available: https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/ 
(accessed 04 February 2017). 

 
Sirkin, H., Zinser, M., Rose, J.R., 2015. "The Robotics Revolution." The Boston Consulting 

Group, Boston, MA. Available: 
http://library.kiet.re.kr/_MultiData/krms/00040/057/The%20Robotics%20Revolution.pdf 
(accessed 12 July 2016). 

 
Stanford, 2015. "Artificial Intelligence and Life in 2030." Stanford University, Palo Alto, 

California. 
 
Stewart, I., De, D., Cole, A., 2015. "Technology and people: The great job-creating machine." 

Deloitte. Available: http://www2.deloitte.com/uk/en/pages/finance/articles/technology-
and-people.html (accessed 17 May 2016). 
 

Stiroh, K.J., 2002. "Information Technology and the U.S. Productivity Revival: what Do the 
Industry Data Say?" American Economic Review 92, 1559–1576. 

 
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R., 2013. 

"Intriguing properties of neural networks." in Computer Vision and Pattern Recognition, 
2013.  

 
Taigman, Y., Yang, M., Ranzato, MA., Wolf, L. 2014. "DeepFace: Closing the Gap to Human-

Level Performance in Face Verification." In Conference on Computer Vision and Pattern 

Recognition. June 2014. Columbus, Ohio.  
  
The Economist, 2017. "Finding a voice." The Economist. Available: 

http://www.economist.com/technology-quarterly/2017-05-01/language (accessed 21 
February 2017). 

 



53 
Pardee Center: Modeling AI 

The Economist, 2016a. "After Moore’s Law." The Economist. 12 March 2016. Available: 
http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law (accessed 
28 February 2017). 

 
The Economist, 2016b. The Trouble with GDP. The Economist. April 30, 2016. Available: 

http://www.economist.com/news/briefing/21697845-gross-domestic-product-gdp-
increasingly-poor-measure-prosperity-it-not-even (accessed 28 April 2017). 

 
The Economist, 2013. "Coming Home." The Economist. 19 January 2013. Available: 

http://www.economist.com/news/special-report/21569570-growing-number-american-
companies-are-moving-their-manufacturing-back-united (accessed 12 July 2016). 

 
Thompson, A., 2016. "Germany Is Using AI to Smooth the Fluctuations in Its Power Grid." 

Popular Mechanics. Available: 
http://www.popularmechanics.com/technology/infrastructure/a21826/germany-machine-
learning-power-grid/ (accessed 19 April 2017). 

 
Thompson, S., 2016. "GDP a poor measure of progress, say Davos Economists." World 

Economic Forum. 23 January 2016. Available: 
https://www.weforum.org/agenda/2016/01/gdp/ (accessed 28 April 2017). 

 
Tractica, 2016. "Computer Vision Hardware and Software Market to Reach $48.6 Billion by 

2022." Tractica Research. 20 June 2016. Available: 
https://www.weforum.org/agenda/2016/01/gdp/ (accessed 28 April 2017). 

 
Turing, A.M., 1950. "Computing Machinery and Intelligence." Mind 49, 433–460. 
 
UNCTAD, 2015. "Key Statistics and Trends in International Trade." UN Conference on Trade 

and Development, Geneva, Switzerland. 
 
Vere, S.A., 1992. "A cognitive process shell." Behavioral Brain Science 15, 460–461.  
 
Vincent, J., 2016. "This Warehouse Robot Just Won Amazon’s Shelf-Stocking Challenge." 

Popularmechanics. 05 July 2016. Available: 
https://www.theverge.com/2016/7/5/12095788/amazon-picking-robot-challenge-2016 
(accessed 01 May 2017). 

 
Waters, R., 2015. "Investor rush to artificial intelligence is the real deal." Financial Times. 04 

January 2015. Available: http://www.ft.com/intl/cms/s/2/019b3702-92a2-11e4-a1fd-
00144feabdc0.html#axzz49PRkdWgc (accessed 12 May 2016). 

 
Waters, R., Bradshaw, T., 2016. "Robot economy sparks global investment boom." Financial 

Times. 03 May 2016. Available: https://www.ft.com/content/5a352264-0e26-11e6-ad80-
67655613c2d6 (accessed 06 May 2017). 

 



54 
Pardee Center: Modeling AI 

Wilson, G., Staffell, I., 2017. "The year coal collapsed: 2016 was a turning point for Britain’s 
electricity." The Conversation. 06 January 2017. Available: 
https://theconversation.com/the-year-coal-collapsed-2016-was-a-turning-point-for-
britains-electricity-70877 (accessed 01 May 2017). 

 
World Bank Group (Ed.), 2016. "Digital Dividends, World development report." International 

Bank for Reconstruction and Development / The World Bank, Washington, DC. 
 
Wong, J. 2016. "The workers in these countries believe AI and robots will replace them." 

Quartz. 18 March 2016. Available: https://qz.com/642741/the-workers-in-these-
countries-believe-ai-and-robots-will-replace-them/ (accessed 23 March 2017). 

 
Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., et al. 2016. "Achieving 

Human Parity in Conversational Speech Recognition." Microsoft Research (Technical 

Report MSR- TR-2016-71). Revised February 2017. Available: 
https://arxiv.org/abs/1610.05256 (accessed 23 March 2017). 

 
Yaraghi, N., Ravi, S., 2016. "The Current and Future State of the Sharing Economy." Brookings 

Institute. 29 December 2016. Washington, D.C. 
 
Zion Market Research, 2017. "Global Service Robotics Market expected to reach USD 24.10 

Billion by 2022." Zion Market Research. 01 February 2017. Available: 
https://globenewswire.com/news-release/2017/02/01/912700/0/en/Global-Service-
Robotics-Market-expected-to-reach-USD-24-10-Billion-by-2022-Zion-Market-
Research.html (accessed 28 April 2017). 

 


